14 rezultatima
In many organisms, episodes of low O2 concentration (hypoxia) and the subsequent rise of O2 concentration (reoxygenation) result in the accumulation of reactive oxygen species and oxidative stress. Selenoprotein M (SelM), is a selenocysteine containing protein with redox activity involved in the
Tumor suppressor p53 exhibits an enigmatic phenotype in cells exposed to electrophilic, cyclopentenone prostaglandins of the A and J series. Namely, cells harboring a wild-type p53 gene accumulate p53 protein that is conformationally and functionally impaired. This occurs via an unknown molecular
Selenium deficiency constitutes a risk factor for the incidence and negative course of severe diseases including sepsis, stroke, autoimmune diseases or cancer. In this study, hypoxia is identified as a powerful stimulus to redirect selenoprotein biosynthesis causing reduced selenoprotein P
Sleep apnea syndrome is characterized by recurrent episodes of oxygen desaturation and reoxygenation (intermittent hypoxia [IH]) and is a risk factor for insulin resistance/type 2 diabetes. However, the mechanisms linking IH stress and insulin resistance remain elusive. We exposed human hepatocytes
The selenoprotein thioredoxin reductase (TrxR1) is an integral part of the thioredoxin system. It serves to transfer electrons from NADPH to thioredoxin leading to its reduction. Interestingly, recent work has indicated that thioredoxin reductase can regulate the activity of transcription factors
Selenoprotein T (SELENOT) is a thioredoxin-like protein, which mediates oxidoreductase functions via its redox active motif Cys-X-X-Sec. In mammals, SELENOT is expressed during ontogenesis and progressively decreases in adult tissues. In the heart, it is re-expressed after ischemia and induces
Obstructive sleep apnea (OSA) causes many systemic disorders via mechanisms related to sympathetic nerve activation, systemic inflammation, and oxidative stress. OSA typically shows repeated sleep apnea followed by hyperventilation, which results in intermittent hypoxia (IH). IH is associated with
BACKGROUND
Excessive proliferation and apoptosis resistance of pulmonary artery smooth muscle cells (PASMCs) are key mechanisms of pulmonary arterial hypertension (PAH). Despite the multiple combination therapy, a considerable number of patients develop severe pulmonary hypertension (PH) because of
Redox modulation by antioxidants, such as selenium (Se), has emerged as an important regulator of erythropoiesis. Using Se-deficient (0.04 ppm), Se-adequate (0.1 ppm), and Se-supplemented (0.4 ppm) C57/BL6 mice, we show that Se deficiency caused anemia, when compared to the Se-supplemented and
Fluorescence differential display (FDD) and comparative RT-PCR have been used extensively to detect differentially expressed genes. We investigated hypoxia-induced gene expression in the brain by FDD-PCR and comparative RT-PCR. Mice were anaesthetized after which hypoxia was induced by neck ligation
Thioredoxin reductase (TRX) is a selenoprotein that reduces oxidized protein substrates in an NADPH-dependent process (cf. Fig. 1). The thioredoxins (TX) are a family of small redox active proteins that undergo reversible oxidation/reduction and help to maintain the redox state of cells. TX serves
Coronary heart disease (CHD) remains the greatest killer in the Western world, and although the death rate from CHD has been falling, the current increased prevalence of major risk factors including obesity and diabetes, suggests it is likely that CHD incidence will increase over the next 20 years.
Selenium-binding protein 1 (SELENBP1) is an intracellular protein that has been detected in the circulation in response to myocardial infarction. Hypoxia and cardiac surgery affect selenoprotein expression and selenium (Se) status. For this reason, we decided to analyze circulating SELENBP1
The blind subterranean mole rat (Spalax ehrenbergi) exhibits a relatively long life span, which is attributed to an efficient antioxidant defense affording protection against accumulation of oxidative modifications of proteins. Methionine residues can be oxidized to methionine sulfoxide (MetO) and