Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Ethnopharmacology 2019-Jun

An extract from Myracrodruon urundeuva inhibits matrix mineralization in human osteoblasts.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Adriana Matos
Flávia Oliveira
Alessandra Machado
Luiz Saldanha
Cintia Tokuhara
Leonardo Souza
Wagner Vilegas
Thiago Dionísio
Carlos Santos
Camila Peres-Buzalaf

Mo kle

Abstrè

Phytotherapy based on plant-derived compounds is an alternative medicinal strategy for the relief of symptoms and the curing of diseases. The leaves of Myracrodruon urundeuva a medicinal plant also known as "aroeira", has been used in traditional medicine as healing, antiulcer and anti-inflammatory to treat skeletal diseases in Brazil, but its role in bone cell toxicity, as well as in bone formation, remains to be established.We sought to determine the in vitro osteogenic effects of a hydroalcoholic M. urundeuva leaves extract in primary human osteoblasts.Cell viability, reactive oxygen species (ROS) production, alkaline phosphatase (ALP) activity and matrix mineralization were evaluated by MTT assay, DCFH-DA probe, colorimetric-based enzymatic assay and Alizarin Red-staining, respectively. Besides, the matrix metalloproteinase (MMP)-2 and progressive ankylosis protein homolog (ANKH) gene expression were determined by real-time RT-qPCR and MMP-2 activity by zymography.Exposure of osteoblasts to M. urundeuva extract significantly decreased viability and increased reactive oxygen species (ROS) production, regardless of the extract concentration. The M. urundeuva extract at 10 μg/mL also downregulated matrix metalloproteinase (MMP)-2, while upregulating progressive ankylosis protein homolog (ANKH) gene expression. By contrast, the MMP-2 activity was unchanged. The M. urundeuva extract at 10 μg/mL also reduced alkaline phosphatase (ALP) activity and mineralization.Overall, our findings suggest that the inhibition of osteogenic differentiation and matrix mineralization promoted by M. urundeuva may be due more to an increase in oxidative stress than to the modulation of MMP-2 and ANKH expression.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge