Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical and Biophysical Research Communications 2018-Dec

Anti-hypoxic effect of dihydroartemisinin on pulmonary artery endothelial cells.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Hua Yu
Jingjing Liu
Yizhi Dong
Min Xu
Le Xu
Huaqin Guan
Xiaoru Xia
Liangxing Wang

Mo kle

Abstrè

BACKGROUND

Previous studies have found that dihydroartemisinin (DHA) has multiple functions such as anti-inflammatory, anti-tumor in addition to anti-malarial effects. Effect of DHA on monocrotaline-induced pulmonary hypertension in rats has been reported, while the specific mechanism is not known.

METHODS

A hypoxic model was established with human pulmonary arterial endothelial cells (HPAECs) to investigate the possible mechanism of DHA. Effects of DHA on proliferation of HPAECs were evaluated by CCK-8 and EdU assay. Effects of DHA on cell oxidative stress, cell migration, angiogenesis, cell cycle and autophagy, as well as the possible underlying mechanism were also detected by using the established normoxia/hypoxia cell models.

RESULTS

DHA significantly inhibited hypoxia induced increase of HPAECs proliferation in a dose dependent manner, migratory ability and angiogenic ability. DHA also significantly reversed hypoxia induced oxidative stress as a reduction of ROS and NO, and an increase of SOD. Autophagosomes, LC3B protein and apoptotic proteins were significantly increased in DHA treated hypoxic HPAECs. Autophagy inhibitor 3-Methyladenine diminishes the anti-hypoxia effects of DHA on cell proliferation, migration, and autophagy and apoptosis protein expression in HPAECs.

CONCLUSIONS

DHA effectively inhibits hypoxia induced increase of cell proliferation, migration, and oxidative stress in HPAECs, and autophagy may be the underlying mechanism of DHA.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge