Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Yakugaku Zasshi 1996-Jul

[Development of drug delivery systems for macromolecular drugs].

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Y Takakura

Mo kle

Abstrè

With a rapid progress in biotechnology, a variety of endogenous macromolecular substances have become a novel class of therapeutic agents. This review will focus on the development of delivery systems for macromolecular drugs. Current status and future perspectives in this research field are reviewed mainly based on the results obtained in our laboratory. First of all, we studied pharmacokinetic characteristics of macromolecules in relation to their physicochemical properties such as molecular weight and electric charge. Based on this information, we first developed macromolecular prodrugs as a delivery system for low molecular weight drugs. An antitumor antibiotic, mitomycin C (MMC) were covalently conjugated with dextran and various types of macromolecular prodrug of MMC were developed for tumor targeting. Secondly, delivery systems for protein drugs such as soybean trypsin inhibitor, uricase, and recombinant superoxide dismutase (SOD) were developed. In particular, successful targeting of SOD to the liver, kidney and blood circulation was achieved by chemical modification of the protein drug. Finally, we have been trying to develop delivery systems for nucleic acid drugs involving antisense oligonucleotides and plasmid DNA. Prior to the development of delivery systems, we found that the pharmacokinetics of the nucleic acid drugs are decided by their physicochemical properties as polyanions even if these materials contain genetic information. Several approaches were tested to control the in vivo behavior of the oligonucleotides and plasmid DNA based on the finding. Thus, we have established the strategy for rational design of delivery systems for various types of macromolecular drugs based on the pharmacokinetic considerations. This methodology can be a formidable tool for the development of clinically applicable macromolecular drugs.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge