Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
International Review of Neurobiology 2019

Dichloroacetate-induced peripheral neuropathy.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Peter Stacpoole
Christopher Martyniuk
Margaret James
Nigel Calcutt

Mo kle

Abstrè

Dichloroacetate (DCA) has been the focus of research by both environmental toxicologists and biomedical scientists for over 50 years. As a product of water chlorination and a metabolite of certain industrial chemicals, DCA is ubiquitous in our biosphere at low μg/kg body weight daily exposure levels without obvious adverse effects in humans. As an investigational drug for numerous congenital and acquired diseases, DCA is administered orally or parenterally, usually at doses of 10-50mg/kg per day. As a therapeutic, its principal mechanism of action is to inhibit pyruvate dehydrogenase kinase (PDK). In turn, PDK inhibits the key mitochondrial energy homeostat, pyruvate dehydrogenase complex (PDC), by reversible phosphorylation. By blocking PDK, DCA activates PDC and, consequently, the mitochondrial respiratory chain and ATP synthesis. A reversible sensory/motor peripheral neuropathy is the clinically limiting adverse effect of chronic DCA exposure and experimental data implicate the Schwann cell as a toxicological target. It has been postulated that stimulation of PDC and respiratory chain activity by DCA in normally glycolytic Schwann cells causes uncompensated oxidative stress from increased reactive oxygen species production. Additionally, the metabolism of DCA interferes with the catabolism of the amino acids phenylalanine and tyrosine and with heme synthesis, resulting in accumulation of reactive molecules capable of forming adducts with DNA and proteins and also resulting in oxidative stress. Preliminary evidence in rodent models of peripheral neuropathy suggest that DCA-induced neurotoxicity may be mitigated by naturally occurring antioxidants and by a specific class of muscarinic receptor antagonists. These findings generate a number of testable hypotheses regarding the etiology and treatment of DCA peripheral neuropathy.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge