Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Veterinary Parasitology 2011-Aug

Emerging perspectives in the research of bovine babesiosis and anaplasmosis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Carlos E Suarez
Susan Noh

Mo kle

Abstrè

The Babesia bovis and B. bigemina apicomplexan protozoa in conjunction with the rickettsia Anaplasma marginale are intraerythrocytic pathogens that are responsible for the most prevalent and costly tick borne diseases (TBD's) of cattle worldwide. These organisms are historically associated as they can cause clinically related hemolytic diseases in cattle, are all transmitted by Rhiphicephallus (Boophilus) ticks, and share an uncanny ability to evade the immune systems of the vertebrate hosts, causing persistent disease. In addition, acute babesiosis and anaplasmosis can be prevented quite effectively by combining tick control and vaccination with living attenuated organisms. However these methods of control have numerous limitations and improved approaches are needed. Importantly, immunizations of cattle with inactivated experimental Babesia and Anaplasma vaccines can elicit variable degrees of protection, indicating the feasibility for the development of inactivated or subunit vaccines. A new research toolbox that includes full genome sequencing combined with the improved ability to genetically modify the organisms is enhancing our understanding of their biology. An emerging paradigm is the use of recently developed Babesia and Anaplasma transfection methods for functional gene characterizations and for vaccine development. Promising recently identified subunit vaccine candidates are also emerging, including babesial proteases, putative rhoptry, microneme, and sexual stage antigens, as well as subdominant, conserved, A. marginale outer membrane major surface proteins. However, significant knowledge gaps on the role of key parasite molecules involved in cell invasion, adhesion, asexual and sexual reproduction, tick transmission, and evasion of the immune system, remain. A better understanding of the biology of these organisms and the protective immune responses will positively contribute toward the goal of developing improved immunological and pharmacological interventions against these elusive pathogens that are responsible for the most devastating TBD's of cattle. Importantly, the currently available research toolbox provides basic research instruments for helping close current knowledge gaps which will aid the design and production of effective vaccines and alternative pharmacological interventions.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge