Functional Role of Fibrillin5 in Acclimation to Photooxidative Stress.
Mo kle
Abstrè
The functional role of a lipid-associated soluble protein, fibrillin5 (FBN5), was determined with the Arabidopsis thaliana homozygous fbn5-knockout mutant line (SALK_064597) that carries a T-DNA insertion within the FBN5 gene. The fbn5 mutant remained alive, displaying a slow growth and a severe dwarf phenotype. The mutant grown even under growth light conditions at 80 µmol m-2 s-1 showed a drastic decrease in electron transfer activities around PSII, with little change in electron transfer activities around PSI, a phenomenon which was exaggerated under high light stress. The accumulation of plastoquinone-9 (PQ-9) was suppressed in the mutant, and >90% of the PQ-9 pool was reduced under growth light conditions. Non-photochemical quenching (NPQ) in the mutant functioned less efficiently, resulting from little contribution by energy-dependent quenching (qE). The ultrastructure of thylakoids in the mutant revealed that their grana were unstacked and transformed into loose and disordered structures. Light-harvesting complex (LHC)-containing large photosystem complexes and photosystem core complexes in the mutant were less abundant than those in wild-type plants. These results suggest that the lack of FBN5 causes a decrease in PQ-9 and imbalance of the redox state of PQ-9, resulting in misconducting both short-term and long-term control of the input of light energy to photosynthetic reaction centers. Furthermore, in the fbn5 mutant, the expression of genes involved in jasmonic acid biosynthesis was suppressed to ≤10% of that in the wild type under both growth-light and high-light conditions, suggesting that FBN5 functions as a transmitter of 1O2 in the stroma.