Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochimica et Biophysica Acta - General Subjects 2015-Sep

Functional roles of the hexamer organization of plant glutamate decarboxylase.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Alessandra Astegno
Guido Capitani
Paola Dominici

Mo kle

Abstrè

Glutamate decarboxylase (GAD) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the α-decarboxylation of glutamate to γ-aminobutyrate. A unique feature of plant GAD is the presence of a calmodulin (CaM)-binding domain at its C-terminus. In plants, transient elevation of cytosolic Ca²⁺ in response to different types of stress is responsible for GAD activation via CaM. The crystal structure of GAD isoform 1 from Arabidopsis thaliana (AtGAD1) shows that the enzyme is a hexamer composed of a trimer of dimers. Herein, we show that in solution AtGAD1 is in a dimer-hexamer equilibrium and estimate the dissociation constant (Kd) for the hexamer under different conditions. The association of dimers into hexamers is promoted by several conditions, including high protein concentrations and low pH. Notably, binding of Ca²⁺/CaM1 abolishes the dissociation of the AtGAD1 oligomer. The AtGAD1 N-terminal domain is critical for maintaining the oligomeric state as removal of the first 24 N-terminal residues dramatically affects oligomerization by producing a dimeric enzyme. The deleted mutant retains decarboxylase activity, highlighting the dimeric nature of the basic structural unit of AtGAD1. Site-directed mutagenesis identified Arg24 in the N-terminal domain as a key residue since its mutation to Ala prevents hexamer formation in solution. Both dimeric mutant enzymes form a stable hexamer in the presence of Ca²⁺/CaM1. Our data clearly reveal that the oligomeric state of AtGAD1 is highly responsive to a number of experimental parameters and may have functional relevance in vivo in the light of the biphasic regulation of AtGAD1 activity by pH and Ca²⁺/CaM1 in plant cells. This article is part of a special issue titled "Cofactor-Dependent Proteins: Evolution, Chemical Diversity and Bio-applications."

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge