Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Biochemical Society Transactions 2009-Aug

Inhibition of inducible nitric oxide synthase in respiratory diseases.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Christian Hesslinger
Andreas Strub
Rainer Boer
Wolf-Rüdiger Ulrich
Martin D Lehner
Clemens Braun

Mo kle

Abstrè

Nitric oxide (NO) is a key physiological mediator and disturbed regulation of NO release is associated with the pathophysiology of almost all inflammatory diseases. A multitude of inhibitors of NOSs (nitric oxide synthases) have been developed, initially with low or even no selectivity against the constitutively expressed NOS isoforms, eNOS (endothelial NOS) and nNOS (neuronal NOS). In the meanwhile these efforts yielded potent and highly selective iNOS (inducible NOS) inhibitors. Moreover, iNOS inhibitors have been shown to exert beneficial anti-inflammatory effects in a wide variety of acute and chronic animal models of inflammation. In the present mini-review, we summarize some of our current knowledge of inhibitors of the iNOS isoenzyme, their biochemical properties and efficacy in animal models of pulmonary diseases and in human disease itself. Moreover, the potential benefit of iNOS inhibition in animal models of COPD (chronic obstructive pulmonary disease), such as cigarette smoke-induced pulmonary inflammation, has not been explicitly studied so far. In this context, we demonstrated recently that both a semi-selective iNOS inhibitor {L-NIL [N6-(1-iminoethyl)-L-lysine hydrochloride]} and highly selective iNOS inhibitors (GW274150 and BYK402750) potently diminished inflammation in a cigarette smoke mouse model mimicking certain aspects of human COPD. Therefore, despite the disappointing results from recent asthma trials, iNOS inhibition could still be of therapeutic utility in COPD, a concept which needs to be challenged and validated in human disease.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge