Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
European Journal of Medicinal Chemistry 2017-Nov

Leishmanicidal and cytotoxic activity of hederagenin-bistriazolyl derivatives.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Diego Rodríguez-Hernández
Luiz C A Barbosa
Antonio J Demuner
Amalyn Nain-Perez
Sebastião R Ferreira
Ricardo T Fujiwara
Raquel M de Almeida
Lucie Heller
René Csuk

Mo kle

Abstrè

Aiming to obtain new potent leishmanicidal and cytotoxic compounds from natural sources, the triterpene hederagenin was converted into several new 1,2,3-triazolyl derivatives tethered at C-23 and C-28. For this work hederagenin was isolated from fruits of Sapindus saponaria and reacted with propargyl bromide to afford as a major product bis-propargylic derivative 1 in 74%. Submitting this compound to Huisgen 1,3-dipolar cycloaddition reactions with several azides afforded the derivatives 2-19 with yields in the range of 40-87%. All compounds have been screened for in vitro cytotoxic activity in a panel of five human cancer cell lines by a SRB assay. The bioassays showed that compound 19 was the most cytotoxic against all human cancer cell lines with EC50 = 7.4-12.1 μM. Moreover, leishmanicidal activity was evaluated through the in vitro effect in the growth of Leishmania infantum, and derivatives 1, 2, 5 and 17 were highly effective preventing proliferation of intracellular amastigote forms of L. infantum (IC50 = 28.8, 25.9, 5.6 and 7.4 μM, respectively). All these compounds showed a higher selectivity index and low toxicity against two strains of kidney BGM and liver HepG2 cells. Compound 5 has higher selectivity (1780 times) in comparison with the commercial antimony drug and is around 8 times more selective than the most active compound previously reported hederagenin derivative. Such high activity associated with low toxicities make the new bis-traiazolyl derivatives promising candidates for the treatment of leishmaniasis. In addition, hederagenin and some derivatives (2, 5 and 17) showed interaction in the binding site of the enzyme CYP51Li.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge