Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Reviews of Physiology Biochemistry and Pharmacology 2008

Lipid homeostasis in macrophages - implications for atherosclerosis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
G Schmitz
M Grandl

Mo kle

Abstrè

In industrialized societies with excess food supply, obesity is an expanding problem. As a result of metabolic overload, besides obesity, insulin resistance, type-2 diabetes, dyslipidemia, hypertension, and atherosclerosis develop, which together make up the metabolic syndrome. The imbalance of lipid uptake, metabolism, and removal in many organs such as the liver, muscle, adipose tissue, vessel wall, and macrophages triggers organ transdifferentiation toward lipid storage phenotypes. Macrophages, foam cells, and osteoclasts in calcifying lesions are a hallmark of atherosclerosis and the metabolic syndrome, and must be regarded as an important therapeutic target. In this review, pathways regulating lipid homeostasis in macrophages are updated. These include lipid influx through different receptor entry pathways, the role of membrane microdomains, endolysosomal and cytosolic lipid storage leading to phospholipidosis, and lipid droplet accumulation or activation of lipid efflux either through the Golgi system or bypassing this organelle on the way to the plasma membrane. The interdependence of these pathways and pharmacological modifications are described. The monocyte innate immunity receptor complex in defining monocyte subpopulations and their role in cardiovascular disease is taken into account. The composition of certain molecular lipid species in membrane microdomains and other organelles is essential for cellular functions affecting raft dynamics, signal transduction, and membrane and organelle trafficking. It is very likely that the underlying defects in lipid-associated rare genetic diseases such as ABCA1 deficiency, Niemann-Pick disease type C, as well as the more frequent complex disorders associated with atherosclerosis and phospholipidosis are related to disturbances in membrane homeostasis, signal transduction, and cellular lipid metabolism.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge