Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Reviews in the Neurosciences 2018-Nov

Metabolic regulation of synaptic activity.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Sergei V Fedorovich
Tatyana V Waseem

Mo kle

Abstrè

Brain tissue is bioenergetically expensive. In humans, it composes approximately 2% of body weight and accounts for approximately 20% of calorie consumption. The brain consumes energy mostly for ion and neurotransmitter transport, a process that occurs primarily in synapses. Therefore, synapses are expensive for any living creature who has brain. In many brain diseases, synapses are damaged earlier than neurons start dying. Synapses may be considered as vulnerable sites on a neuron. Ischemic stroke, an acute disturbance of blood flow in the brain, is an example of a metabolic disease that affects synapses. The associated excessive glutamate release, called excitotoxicity, is involved in neuronal death in brain ischemia. Another example of a metabolic disease is hypoglycemia, a complication of diabetes mellitus, which leads to neuronal death and brain dysfunction. However, synapse function can be corrected with "bioenergetic medicine". In this review, a ketogenic diet is discussed as a curative option. In support of a ketogenic diet, whereby carbohydrates are replaced for fats in daily meals, epileptic seizures can be terminated. In this review, we discuss possible metabolic sensors in synapses. These may include molecules that perceive changes in composition of extracellular space, for instance, ketone body and lactate receptors, or molecules reacting to changes in cytosol, for instance, KATP channels or AMP kinase. Inhibition of endocytosis is believed to be a universal synaptic mechanism of adaptation to metabolic changes.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge