Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Health and Preventive Medicine 2008-Mar

Molecular biology of malignant mesothelioma.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Yoshitaka Sekido

Mo kle

Abstrè

Human malignancies develop via a multi-step that involves the accumulation of several key gene alterations with associated genetic and epigenetic events. Although malignant mesothelioma (MM) has been demonstrated to be clearly correlated with asbestos exposure, it remains poorly understood how asbestos fibers confer key gene alterations and induce cellular transformation in normal mesothelial cells, which results in the acquisition of malignant phenotypes, including deregulated cell proliferation and invasion. Malignant mesothelioma presents with the frequent inactivation of tumor suppressor genes of p16(INK4a)/p14(ARF) on chromosome 9p21 and neurofibromatosis type 2 (NF2) on chromosome 22q12, with the latter being responsible for the NF2 familial cancer syndrome. In contrast, MM shows infrequent mutation of the p53 gene, which is one of the most frequently mutated tumor suppressor genes in human malignancies. Genetic abnormalities of oncogenes have also been studied in MM, but no frequent mutations have been identified, including the epidermal growth factor receptor (EGFR) and K-RAS genes. Recent studies have suggested the activation of other receptor tyrosine kinases, including Met, and the deregulations of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K)-AKT signaling cascades, although the alterations responsible for their activation are still not clear. Thus, further genome-wide studies of genetic and epigenetic alterations as well as detailed analyses of deregulated signaling cascades in MM are necessary to determine the molecular mechanisms of MM, which would also provide some clues for establishing a new molecular target therapy for MM.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge