Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Pediatric Research 1998-May

Molecular characterization of pyruvate carboxylase deficiency in two consanguineous families.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
I D Wexler
D S Kerr
Y Du
M M Kaung
W Stephenson
M M Lusk
R S Wappner
J J Higgins

Mo kle

Abstrè

Pyruvate carboxylase (PC) is a biotinylated mitochondrial enzyme that catalyzes the conversion of pyruvate to oxaloacetate. Children with inborn errors of PC metabolism have lactic acidosis, hypoglycemia, and mental retardation. The variable severity of the clinical phenotype is dependent on both genetic and environmental factors. Two consanguineous families with moderate forms of PC deficiency were characterized at the biochemical and molecular levels. In both families, the probands were found to have low PC activity (range, 2-25% of control) in blood lymphocytes and skin fibroblasts associated with either diminished or normal protein levels. In the first case, sequencing of patient-specific PC cDNA demonstrated a T to C substitution at nucleotide 434, which causes a valine to alanine change at amino acid residue 145. Direct sequencing of the parents showed that they are heterozygous for this mutation. In the second family, a brother and sister had mental retardation and episodes of severe lactic/ketoacidosis in early childhood. In these cases, a C to T substitution at nucleotide 1351 results in a cysteine for arginine substitution at amino acid residue 451; the parents were also found to be heterozygous for this mutation. In both families, no other mutations were found, and both substitutions occurred in relatively conserved amino acid residues. These mutations, located in the biotin carboxylase domain, provide a unique opportunity to analyze how natural occurring mutations affect PC function.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge