Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Cell Reports 2012-Jul

N-Glycosylation engineering of tobacco plants to produce asialoerythropoietin.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Farooqahmed S Kittur
Chiu-Yueh Hung
Diane E Darlington
David C Sane
Jiahua Xie

Mo kle

Abstrè

Erythropoietin (EPO) is a glycoprotein hormone that displays both hematopoietic and tissue-protective functions by binding to two distinct receptors. Recombinant human EPO (rhuEPO) is widely used for the treatment of anemia, but its use for tissue protection is limited because of potentially harmful increases in red blood cell mass when higher doses of rhuEPO are used. Recent studies have shown that asialoerythropoietin (asialo-rhuEPO), a desialylated form of rhuEPO, lacks hematopoietic activity, but retains cytoprotective activity. Currently, a small amount of asialo-rhuEPO is produced by enzymatic desialylation of rhuEPO. The prohibitive cost of rhuEPO, however, is a major limitation of this method. Plants have the ability to synthesize complex N-glycans, but lack enzymatic activities to add sialic acid and β1,4-galactose to N-glycan chains. Plants could be genetically engineered to produce asialo-rhuEPO by introducing human β1,4-galactosyltransferase. The penultimate β1,4-linked galactose residues are important for in vivo biological activity. In this proof of concept study, we show that tobacco plants co-expressing human β1,4-galactosyltransferase and EPO genes accumulated asialo-rhuEPO. Purified asialo-rhuEPO binds to an Erythrina cristagalli lectin column, indicating that its N-glycan chains bear terminal β1,4-galactose residues and that the co-expressed GalT is functionally active. Asialo-rhuEPO interacted with the EPO receptor (EPOR) with similar affinity as rhuEPO, implying that it was properly folded. The strategy described here provides a straightforward way to produce asialo-rhuEPO for research and therapeutic purposes.

CONCLUSIONS

N-glycosylation pathway in tobacco plants could be genetically engineered to produce a tissue-protective cytokine, asialoerythropoietin (a desialylated form of human hormone erythropoietin).

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge