Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Molecular Medicine 2004-Aug

Neurodegenerative disorders associated with diabetes mellitus.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Michael Ristow

Mo kle

Abstrè

More than 20 syndromes among the significant and increasing number of degenerative diseases of neuronal tissues are known to be associated with diabetes mellitus, increased insulin resistance and obesity, disturbed insulin sensitivity, and excessive or impaired insulin secretion. This review briefly presents such syndromes, including Alzheimer disease, ataxia-telangiectasia, Down syndrome/trisomy 21, Friedreich ataxia, Huntington disease, several disorders of mitochondria, myotonic dystrophy, Parkinson disease, Prader-Willi syndrome, Werner syndrome, Wolfram syndrome, mitochondrial disorders affecting oxidative phosphorylation, and vitamin B(1) deficiency/inherited thiamine-responsive megaloblastic anemia syndrome as well as their respective relationship to malignancies, cancer, and aging and the nature of their inheritance (including triplet repeat expansions), genetic loci, and corresponding functional biochemistry. Discussed in further detail are disturbances of glucose metabolism including impaired glucose tolerance and both insulin-dependent and non-insulin-dependent diabetes caused by neurodegeneration in humans and mice, sometimes accompanied by degeneration of pancreatic beta-cells. Concordant mouse models obtained by targeted disruption (knock-out), knock-in, or transgenic overexpression of the respective transgene are also described. Preliminary conclusions suggest that many of the diabetogenic neurodegenerative disorders are related to alterations in oxidative phosphorylation (OXPHOS) and mitochondrial nutrient metabolism, which coincide with aberrant protein precipitation in the majority of affected individuals.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge