Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Annals of Neurology 2013-Dec

Neurological deficits caused by tissue hypoxia in neuroinflammatory disease.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Andrew L Davies
Roshni A Desai
Peter S Bloomfield
Peter R McIntosh
Katie J Chapple
Christopher Linington
Richard Fairless
Ricarda Diem
Marianne Kasti
Michael P Murphy

Mo kle

Abstrè

OBJECTIVE

To explore the presence and consequences of tissue hypoxia in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS).

METHODS

EAE was induced in Dark Agouti rats by immunization with recombinant myelin oligodendrocyte glycoprotein and adjuvant. Tissue hypoxia was assessed in vivo using 2 independent methods: an immunohistochemical probe administered intravenously, and insertion of a physical, oxygen-sensitive probe into the spinal cord. Indirect markers of tissue hypoxia (eg, expression of hypoxia-inducible factor-1α [HIF-1α], vessel diameter, and number of vessels) were also assessed. The effects of brief (1 hour) and continued (7 days) normobaric oxygen treatment on function were evaluated in conjunction with other treatments, namely administration of a mitochondrially targeted antioxidant (MitoQ) and inhibition of inducible nitric oxide synthase (1400W).

RESULTS

Observed neurological deficits were quantitatively, temporally, and spatially correlated with spinal white and gray matter hypoxia. The tissue expression of HIF-1α also correlated with loss of function. Spinal microvessels became enlarged during the hypoxic period, and their number increased at relapse. Notably, oxygen administration significantly restored function within 1 hour, with improvement persisting at least 1 week with continuous oxygen treatment. MitoQ and 1400W also caused a small but significant improvement.

CONCLUSIONS

We present chemical, physical, immunohistochemical, and therapeutic evidence that functional deficits caused by neuroinflammation can arise from tissue hypoxia, consistent with an energy crisis in inflamed central nervous system tissue. The neurological deficit was closely correlated with spinal white and gray matter hypoxia. This realization may indicate new avenues for therapy of neuroinflammatory diseases such as MS.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge