Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Drugs and Aging 2011-Jan

Potential predictors of hippocampal atrophy in Alzheimer's disease.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Vikas Dhikav
Kuljeet Anand

Mo kle

Abstrè

The hippocampus is a vulnerable and plastic brain structure that is damaged by a variety of stimuli, e.g. hypoxia, hypoperfusion, hypoglycaemia, stress and seizures. Alzheimer's disease is a common and important disorder in which hippocampal atrophy is reported. Indeed, the available evidence suggests that hippocampal atrophy is the starting point of the pathogenesis of Alzheimer's disease and a significant number of patients with hippocampal atrophy will develop Alzheimer's disease. Studies indicate that hippocampal atrophy has functional consequences, e.g. cognitive impairment. Deposition of tau protein, formation of neurofibrillary tangles and accumulation of β-amyloid (Aβ) contributes to hippocampal atrophy together with damage caused by several other factors. Some of the factors associated with the development of hippocampal atrophy in Alzheimer's disease have been identified, e.g. hypertension, diabetes mellitus, hyperlipidaemia, seizures, affective disturbances and stress, and more is being learnt about other factors. Hypertension can potentially damage the hippocampus through ischaemia caused by atherosclerosis and cerebral amyloid angiopathy. Diabetes can produce hippocampal lesions via both vascular and non-vascular pathologies and can reduce the threshold for hippocampal damage. Carriers of the apolipoprotein E (ApoE)-ε4 genotype have been shown to have greater mesial temporal atrophy and poorer memory functions than non-carriers. In addition to giving rise to abnormal lipid metabolism, the ApoE-ε4 allele can affect the course of Alzheimer's disease via both Aβ-dependent and -independent pathways. Repetitive seizures can increase Aβ-peptide production and cause neurotransmission dysfunction and cytoskeletal abnormalities or a combination of these. Affective disturbances and stress are proposed to increase corticosteroid-induced hippocampal damage in many different ways. In the absence of any specific markers for predicting Alzheimer's disease progression, it seems appropriate to learn more about the various predictors of hippocampal atrophy that determine the progression of Alzheimer's disease from mild cognitive impairment (MCI), and then attempt to address these. It would be interesting to know to what extent these predictors play a role in the development of MCI or hasten the conversion of MCI to full-blown Alzheimer's disease. Finally, it would be useful to know the extent to which these predictors can worsen or aggravate existing Alzheimer's disease. Of the clinically used drugs in Alzheimer's disease, anticholinesterases have been shown to slow down the rate of progression of hippocampal atrophy. One study observed that the neuroprotective effect of these agents is possibly due to an anti-Aβ effect produced by cholinergic stimulation. Similarly, antihypertensive and antihyperglycaemic drugs (pioglitazone and insulin) have been shown to reduce the risk of Alzheimer's disease or disease progression. Currently, there are no disease-modifying therapies available for Alzheimer's disease. It has been suggested that for treatment to be most effective, the regimen must be started before significant downstream damage has occurred (i.e. before the clinical diagnosis of Alzheimer's disease, at the stage of MCI or earlier). Since the hippocampus is a plastic structure and atrophy of this structure is closely related to the pathophysiology of Alzheimer's disease, if we could control blood pressure, regulate blood sugar, treat behavioural and psychological symptoms, achieve satisfactory lipid lowering and maintain a seizure-free state in patients with Alzheimer's disease, this may not only improve disease control but could also potentially affect the rate of disease progression.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge