Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Pharmacology and Experimental Therapeutics 2010-Mar

Pulmonary toxicity and metabolic activation of dauricine in CD-1 mice.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Hua Jin
Jieyu Dai
Xiaoyan Chen
Jia Liu
Dafang Zhong
Yansong Gu
Jiang Zheng

Mo kle

Abstrè

Dauricine is the major bioactive component isolated from the roots of Menispermum dauricum D.C. and has shown promising pharmacological activities with a great potential for clinic use. However, the adverse effects and toxicity of the alkaloid are unfortunately ignored. The objective of the current study was to evaluate the toxicity of dauricine in vitro and in vivo. Mice (CD-1) were treated intraperitoneally with dauricine at various doses, and sera and lung lavage fluids were collected after 24 h of treatment. No changes in serum aspartate aminotransferase, alanine aminotransferase, and blood urea nitrogen were noticed, whereas a dose-dependent increase in lactate dehydrogenase activity was observed in lung lavage fluids. Ethidium-based staining studies showed that remarkable cells lost membrane integrity in the lungs of the animals treated with dauricine at 150 mg/kg. Histopathological evaluation of lungs of mice showed that dauricine at the same dose caused significant alveolar edema and hemorrhage. Exposure to dauricine at 40 muM for 24 h resulted in up to 60% cell death in human lung cell lines BEAS-2B, WI-38, and A549. Ketoconazole showed protective effect on the pulmonary injury in mice given dauricine. A quinone methide metabolite of dauricine was identified in mouse lung microsomal incubations, and the presence of ketoconazole in the microsomal incubations suppressed the formation of the quinone methide metabolite. In conclusion, dauricine produced pulmonary injury in CD-1 mice. The pulmonary toxicity appears to depend on the metabolism of dauricine mediated by CYP3A. The electrophilic quinone methide metabolite probably plays an important role in the pulmonary toxicity induced by dauricine.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge