Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurochemistry 2003-Oct

Regulation of microglial inflammatory response by histone deacetylase inhibitors.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Tiina Suuronen
Jari Huuskonen
Rea Pihlaja
Sergiy Kyrylenko
Antero Salminen

Mo kle

Abstrè

The activation of microglial cells is involved in the pathogenesis of a variety of neurodegenerative diseases, stroke and traumatic brain injuries. Recent studies suggest that protein acetylation can affect the extent of inflammatory responses. Our aim was to elucidate whether histone deacetylase inhibitors, inducers of protein hyperacetylation, regulate the inflammatory response in neural models of inflammation in vitro and whether neurone-glia interactions affect this regulation. Interestingly, we observed that histone deacetylase inhibitors, such as trichostatin A (TSA) and suberoylanilide hydroxamic acid, strongly potentiated the lipopolysaccharide (LPS)-induced inflammatory response in murine N9 and rat primary microglial cells as well in neural co-cultures and hippocampal slice cultures. TSA clearly potentiated the LPS-induced expression of interleukin (IL)-6 and inducible nitric oxide synthase mRNAs, as well as the secretion of cytokines IL-6, tumour necrosis factor-alpha and macrophage inflammatory protein (MIP)-2, and nitric oxide (NO). Co-culture and slice culture experiments showed that the presence of astrocytes and neurones did not stimulate or prevent the pro-inflammatory potentiation induced by histone deacetylase inhibitor in microglial cells. The potentiation of cytokine and NO responses was blocked by the nuclear factor kappa B (NF-kappa B) inhibitors caffeic acid phenethyl ester and helenalin, demonstrating that the NF-kappa B signalling pathway is involved. The DNA-binding activity of the NF-kappa B complex was strongly increased by LPS treatment but not enhanced by TSA. This suggests that potentiation of the inflammatory response is not dependent on the level of cytoplasmic NF-kappa B activation or DNA-binding activity but that site of action may be at the level of transcriptional regulation. Our results suggest that environmental stresses, ageing, diet and diseases that regulate protein acetylation status may also affect the inflammatory response.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge