Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Neurobiology of Disease 2013-Jul

TASK-1 channels in oligodendrocytes: a role in ischemia mediated disruption.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Virginia Hawkins
Arthur Butt

Mo kle

Abstrè

Oligodendrocytes are the myelinating cells of the CNS and, like neurons, are highly sensitive to ischemic damage. However, the mechanisms underlying cytotoxicity in oligodendrocytes during hypoxic/ischemic episodes are not fully understood. TASK-1 is a K(+) leak channel that mediates hypoxic depolarisation in neurons. The expression and function of TASK-1 in oligodendrocytes had not previously been addressed. In this study, we investigate the expression of TASK-1 in oligodendrocytes and its role in white matter ischemic damage. Expression of TASK-1 in oligodendrocytes was investigated in the mouse brain using immunostaining. TASK-1 channel function was identified by established pharmacological and electrophysiological strategies, using the whole-cell patch clamp technique in cell cultures of oligodendrocytes from the optic nerve, a typical white matter tract. The role of TASK-1 in hypoxia was examined in isolated intact optic nerves subjected to oxygen glucose deprivation (OGD). Oligodendrocytes are strongly immunopositive for TASK-1 throughout the brain. Patch-clamp identified functional TASK-1-like leak currents in oligodendrocytes using two recognised means of inhibiting TASK-1, decreasing extracellular pH to 6.4 and exposure to the TASK-1 selective inhibitor anandamide. Incubation of optic nerves with methanandamide, a non-hydrolysable form of anandamide, significantly protected oligodendrocytes against hypoxic disruption and death in OGD. Our data demonstrate for the first time that oligodendrocytes express functional TASK-1 channels and provide compelling evidence they contribute to oligodendrocyte damage in hypoxia. Since oligodendrocyte damage is a key factor in ischemic episodes, TASK-1 may provide a potential therapeutic target in stroke and white matter disease.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge