Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Environmental Pollution 2017-Apr

The effect of chronic silver nanoparticles on aquatic system in microcosms.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Hong Sheng Jiang
Liyan Yin
Na Na Ren
Ling Xian
Suting Zhao
Wei Li
Brigitte Gontero

Mo kle

Abstrè

Silver nanoparticles (AgNPs) inevitably discharge into aquatic environments due to their abundant use in antibacterial products. It was reported that in laboratory conditions, AgNPs display dose-dependent toxicity to aquatic organisms, such as bacteria, algae, macrophytes, snails and fishes. However, AgNPs could behave differently in natural complex environments. In the present study, a series of microcosms were established to investigate the distribution and toxicity of AgNPs at approximately 500 μg L-1 in aquatic systems. As a comparison, the distribution and toxicity of the same concentration of AgNO3 were also determined. The results showed that the surface layer of sediment was the main sink of Ag element for both AgNPs and AgNO3. Both aquatic plant (Hydrilla verticillata) and animals (Gambusia affinis and Radix spp) significantly accumulated Ag. With short-term treatment, phytoplankton biomass was affected by AgNO3 but not by AgNPs. Chlorophyll content of H. verticillata increased with both AgNPs and AgNO3 short-term exposure. However, the biomass of phytoplankton, aquatic plant and animals was not significantly different between control and samples treated with AgNPs or AgNO3 for 90 d. The communities, diversity and richness of microbes were not significantly affected by AgNPs and AgNO3; in contrast, the nitrification rate and its related microbe (Nitrospira) abundance significantly decreased. AgNPs and AgNO3 may affect the nitrogen cycle and affect the environment and, since they might be also transferred to food web, they represent a risk for health.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge