Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Neurosurgery 1998-Sep

Vascular extracellular matrix remodeling in cerebral aneurysms.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
G Bruno
R Todor
I Lewis
D Chyatte

Mo kle

Abstrè

OBJECTIVE

The occurrence of cerebral aneurysms has been linked to alterations in the extracellular matrix and to matrix-degrading proteases. The purpose of the present study was to determine whether active extracellular matrix remodeling occurs within cerebral aneurysms.

METHODS

Aneurysm tissue was collected from 23 patients (two of whom had a ruptured aneurysm and 21 of whom had an unruptured aneurysm) and compared with 11 control basilar arteries harvested at autopsy. Active proteinases capable of gelatin lysis were identified by performing in situ zymography in the presence and absence of a metalloproteinase inhibitor (ethylenediamine tetraacetic acid) and a serine proteinase inhibitor (phenylmethylsulfonyl fluoride). Immunohistochemical analysis was used to localize plasmin, tissue-type (t)-plasminogen activator (PA), urokinase-type (u)-PA, membranetype (MT1)-matrix metalloproteinase (MMP), MMP-2, MMP-9, and tenascin. Focal areas of gelatin lysis occurred in most cerebral aneurysm tissue samples (17 of 21), but rarely in control arteries (two of 11) (p = 0.002). Both serine proteinases and MMPs contributed to gelatin lysis; however, the MMPs were the predominant enzyme family. Plasmin (p = 0.04) and MT1-MMP (p = 0.04) were expressed in the aneurysm tissue but were unusual in control tissue. The MMP-2 was also expressed more commonly in aneurysm than in control tissue (p = 0.07). The MMP-9 and t-PA were expressed in both groups; however, different staining patterns were observed between aneurysm and control tissue. Tenascin staining was commonly present in both groups, whereas u-PA staining was rarely present.

CONCLUSIONS

Aneurysm tissue demonstrates increased proteolytic activity capable of lysing gelatin and increased expression of plasmin, MT1-MMP, and MMP-2 when compared with normal cerebral arteries. This activity may contribute to focal degradation of the vascular extracellular matrix and may be related to aneurysm formation and growth.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge