Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Frontiers in Plant Science 2020-Sep

Invertebrate Decline Leads to Shifts in Plant Species Abundance and Phenology

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Lyen an sove nan clipboard la
Josephine Ulrich
Solveig Bucher
Nico Eisenhauer
Anja Schmidt
Manfred Türke
Alban Gebler
Kathryn Barry
Markus Lange
Christine Römermann

Mo kle

Abstrè

Climate and land-use change lead to decreasing invertebrate biomass and alter invertebrate communities. These biotic changes may affect plant species abundance and phenology. Using 24 controlled experimental units in the iDiv Ecotron, we assessed the effects of invertebrate decline on an artificial grassland community formed by 12 herbaceous plant species. More specifically, we used Malaise traps and sweep nets to collect invertebrates from a local tall oatgrass meadow and included them in our Ecotron units at two different invertebrate densities: 100% (no invertebrate decline) and 25% (invertebrate decline of 75%). Another eight EcoUnits received no fauna and served as a control. Plant species abundance and flowering phenology was observed weekly over a period of 18 weeks. Our results showed that invertebrate densities affected the abundance and phenology of plant species. We observed a distinct species abundance shift with respect to the invertebrate treatment. Notably, this shift included a reduction in the abundance of the dominant plant species, Trifolium pratense, when invertebrates were present. Additionally, we found that the species shifted their flowering phenology as a response to the different invertebrate treatments, e.g. with decreasing invertebrate biomass Lotus corniculatus showed a later peak flowering time. We demonstrated that in addition to already well-studied abiotic drivers, biotic components may also drive phenological changes in plant communities. This study clearly suggests that invertebrate decline may contribute to already observed mismatches between plants and animals, with potential negative consequences for ecosystem services like food provision and pollination success. This deterioration of ecosystem function could enhance the loss of insects and plant biodiversity.

Keywords: biotic interaction; flowering phenology; global change; global change experiment; iDiv Ecotron; insect decline; peak flowering; trophic cascading.

Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge