8 rezilta yo
Oat (Avena sativa L.) seed extracts exhibited a high degree of catalytic activity including amylase activities. Proteins in the oat seed extracts were optimized for their amylolytic activities. Oat extract with amylolytic activity was separated by SDS-PAGE and a major protein band with an apparent
Soybean beta-amylase, comprising a (beta/alpha)8-barrel core with a mobile loop, similar to that of triose phosphate isomerase, was mutated by site-directed mutagenesis at residues Glu380 and Leu383. X-ray crystallographic findings suggest that Glu380 is the counterpart of the catalytic site
Oat (Avena sativa L.) seedling extract exhibited a high degree of catalytic activities. Bioinformatics were used to identify β-amylases as abundant enzymes in the oat seedling extract. These identified oat enzymes are a member of the GH14 family. Proteins in the Avena sativa seedling extract were
Porous starch granules (PSGs) with various pores and cavity sizes were prepared by amylolysis enzymes. The greatest hydrolysis rate on corn starch granule was observed with α-amylase, followed by gluco- and β-amylases. Temperature increase enhanced glucoamylase reaction rate more drastically than
Immunohistochemical staining was applied together with the multicolor fluorescent scheme to demonstrate the amylase activity for polysaccharide hydrolysis in stored or starved aerobic granules that are in substrate deficiency. If sufficient nutrients were present, alpha-amylase and beta-amylase were
A novel maltose-forming α-amylase (PSMA) was recently found in the hyperthermophilic archaeon Pyrococcus sp. ST04. This enzyme shows <13% amino-acid sequence identity to other known α-amylases and displays a unique enzymatic property in that it hydrolyzes both α-1,4-glucosidic and α-1,6-glucosidic
Fusobacterium nucleatum acts as an intermediate between early and late colonizers in the oral cavity. In this study, we showed that F. nucleatum subsp. polymorphum can bind to a salivary component with a molecular weight of approximately 110 kDa and identified the protein and another major factor of
Glycogen synthetase (2.4.1.11) forms I (independent or active) and D (dependent or passive) as well as the enzymes active in the transformation of the pathways, protein kinase and phosphatase transferase, were studied in the sensory cells and glycogen rich epidermal cells of the weakly electric fish