Paj 1 soti nan 78 rezilta yo
High levels of reactive species of nitrogen and oxygen in diabetes may cause modifications of proteins. Recently, an increase in protein tyrosine nitration was found in several diabetic tissues. To understand whether protein tyrosine nitration is the cause or the result of the associated diabetic
The presence of advanced glycation end products (AGEs) formed because of hyperglycemia in diabetic patients has been strongly linked to the development of diabetic complications and disturbances in cellular function. In this report, we describe the isolation and identification of novel AGE-binding
OBJECTIVE
The association between three tyrosine phosphatase 1B (PTP1B) gene polymorphisms and type 2 diabetes was examined by comparing the prevalence rates of these polymorphisms in type 2 diabetic patients and healthy control subjects. Furthermore, the association of the polymorphisms and PTP1B
The glycoxidation products Nepsilon-(carboxymethyl)lysine and pentosidine increase in skin collagen with age and at an accelerated rate in diabetes. Their age-adjusted concentrations in skin collagen are correlated with the severity of diabetic complications. To determine the relative roles of
As part of our continuous search for compounds from natural sources that can treat diabetes and its diabetic complications, in the present work, we investigated the protein tyrosine phosphatase 1B (PTP1B) and rat lens aldose reductase (RLAR) inhibitory activities of the roots of Aralia
IRS proteins are cellular adaptor molecules that mediate many of the key metabolic actions of insulin. When tyrosine is phosphorylated by the activated insulin receptor, IRS proteins recruit downstream effectors, such as phosphoinositide 3-kinase and mitogen-activated protein kinase, in order to
Store-operated Ca(2+) entry (SOCE) is mediated by the store-operated Ca(2+) channel (SOC) that opens upon depletion of internal Ca(2+) stores following activation of G protein-coupled receptors or receptor tyrosine kinases. Over the past two decades, the physiological and pathological relevance of
The aim of the present study was a comparative investigation of water and 70% ethanol extracts derived from yellow and red onion (Allium cepa L.) peels against diabetes and diabetic complications. The total phenolic contents (TPCs) and total flavonoid contents (TFCs) of each cultivar,
Protein tyrosine phosphatase 1B (PTP1B) regulates tyrosine kinase receptor-mediated responses, and especially negatively influences insulin sensitivity, thus PTP1B inhibitors (PTP1Bi) are currently evaluated in the context of diabetes. We recently revealed another important target for PTP1Bi,
OBJECTIVE
Impaired wound healing is a major complication of diabetes mellitus. The mechanisms that govern wound healing, however, are complex and incompletely understood. In the present study, we determined the inhibitory role of protein tyrosine phosphatase 1B (PTP1B) in the process of diabetic
Diabetes is associated with a hypercoagulable state that contributes to macrovascular complications, including cardiovascular events. The glycation reaction, a consequence of chronic hyperglycemia, has also been implicated in the pathogenesis of diabetic complications. Glycated proteins have
The present work investigates protein tyrosine phosphatase 1B (PTP1B) and the α-glucosidase inhibitory activities of two edible brown algae, Ecklonia stolonifera and Eisenia bicyclis, as well as in their isolated phlorotannins. Since the individual extracts and fractions showed significant
In the present study, we investigated the anti-diabetic potential of fucosterol by evaluating the ability of this compound to inhibit rat lens aldose reductase (RLAR), human recombinant aldose reductase (HRAR), protein tyrosine phosphatase 1B (PTP1B), and α-glucosidase. Fucosterol displayed moderate
Diabetes mellitus is a metabolic disease characterized by high blood glucose levels and usually associated with several chronic pathologies. Aldose reductase and protein tyrosine phosphatase 1B enzymes have identified as two novel molecular targets associated with the onset and progression of type
Peroxynitrite (PON) and methylglyoxal (MGO), two diabetes-associated compounds, are believed to be important causative players in development of diabetic cataracts. In the current study, different spectroscopic methods, gel electrophoresis, lens culture and microscopic assessments were applied to