Paj 1 soti nan 27 rezilta yo
In this study, tocopherol based polymeric micelles were successfully prepared to enhance the anticancer effect of fisetin (FIS) in breast cancer cells.
The drug-loaded carrier was characterized in terms of physicochemical and in vivo parameters.
Compared to FIS, FIS-TPN showed higher cellular uptake
Overexpression of human epidermal growth factor receptor 2 (HER2) is observed in breast cancer. The major snag faced by the human population is the development of chemoresistance to HER2 inhibitors by advanced stage breast cancer cells. Moreover, recent researchers focussed on fisetin as an
The natural flavonoid fisetin (FS) has shown anticancer properties but its in-vivo administration remains challenging due to its poor aqueous solubility. The aim of the study was to develop FS loaded pluronic127 (PF)-folic acid (FA) conjugated micelles (FS-PF-FA) by the way of increasing solubility,
The outcome of producing apoptotic defects in cancer cells is the primary obstacle that limits the therapeutic efficacy of anticancer agents, and hence the development of novel agents targeting novel non-canonical cell death pathways has become an imperative mission for clinical research. Fisetin
Fisetin (3,3',4',7-tetrahydroxyflavone), a flavonoid found in a number of fruits and vegetables, has diverse biological activities, including cytotoxic effects on cancer cells. In this study, we investigated the effect of fisetin on triple-negative breast cancer (TNBC) cells. TNBC has a poorer
Triple negative breast cancer (TNBC), characterized by its highly aggressive and metastatic features, is associated with poor prognosis and high mortality partly due to lack of effective treatment. Fisetin, a natural flavonoid compound, has been demonstrated to possess anti-cancer effects in various
Metastasis is commonly seen in advanced stage of cancers, and matrix metalloproteinases (MMPs) are commonly up-regulated and have been identified as critical regulators. In this present study, a flavonoid, fisetin, which can be found in diverse foods, is investigated for its ability to inhibit cell
An accurate, precise and sensitive method was developed and validated for the simultaneous quantification of the flavonoid glycoside robinin, and its algycone kaempferol in human breast cancer MCF-7 cells. The application of liquid chromatography-tandem mass spectrometry (LC/MS/MS) with a
Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and BACKGROUND
The natural flavonoid fisetin has shown anticancer properties but its in vivo administration remains challenging due its poor aqueous solubility and extensive in vivo metabolism. This juncture demands an effective, controlled release and safe formulation of fisetin would be a significant
Multidrug resistance (MDR) is one of the most significant obstacles in cancer chemotherapy. One of the mechanisms involved in the development of MDR is the over-expression of P-glycoprotein (P-gp). It is widely known that natural compounds found in vegetables, fruits, plant-derived beverages and
Invasion and metastasis are among the main causes of death in patients with malignant tumors. Fisetin (3,3',4',7-tetrahydroxyflavone), a natural flavonoid found in the smoke tree (Cotinus coggygria), is known to have antimetastatic effects on prostate and lung cancers; however, the effect of fisetin
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early
Fisetin, a natural flavonoid found in a variety of edible and medical plants, has been suggested to inhibit the proliferation of various tumor cells and to induce apoptosis. However, the effects of fisetin on breast cancer have rarely been reported and the underlying mechanism is still undefined.
Fisetin is a well known flavonoid that shows several properties such as antioxidant, antiviral and anticancer activities. Its use in the pharmaceutical field is limited due to its poor aqueous solubility which results in poor bioavailability and poor permeability. The aim of our present study is to