Paj 1 soti nan 22 rezilta yo
This study was undertaken to evaluate the effect of ginsenoside-Re (Gin-Re) isolated from roots of Panax ginseng on carrageenan-induced paw and TPA-induced skin inflammations in experimental mice. Moreover, to confirm further the anti-inflammatory activities of Gin-Re, LPS-induced macrophage
BACKGROUND
Microglial activation plays an important role in neurodegenerative diseases by producing several pro-inflammatory enzymes and pro-inflammatory cytokines. Lipopolysaccharide (LPS)-induced inflammation leads to the activation of microglial cells in the central nervous system (CNS) and is
Ginseng (the root of Panax ginseng C.A. Meyer, family Araliaceae), which contains protopanaxadiol ginsenoside Rb1 and protopanaxatriol ginsenoside Re as main constituents, is frequently used to treat cancer, inflammation, and stress. In the preliminary study, protopanaxatriol ginsenoside Re
Diabetes mellitus (DM) is now a global health problem, however, its pathogenesis has not yet been fully deciphered. Even though modern medicine has great contribution to the control and treatment of DM, it is still far from success to completely cure the disease. Panax ginseng C.A. Meyer (ginseng)
The impaired cardiac function caused by reduced myocardial contractility is a typical manifestation of sepsis/septic shock. Ginsenoside Re (GS-Re) is one of the most abundant ingredients of ginseng. This study was designed to investigate the protective effects of GS-Re on lipopolysaccharide
Ginsenosides are the main active constituents of Panax ginseng. Ginsenoside Re is one of the major ginsenosides; whereas hydrolysis products such as Rd appear to have higher biological activity though are present in smaller amounts. Ginsenosides, from their early use in folk medicine to modern
Ginsenosides are divided into two groups based on the types of the panaxadiol group (e.g., ginsenoside-Rb1 and -Rc) and the panaxatriol group (e.g., ginsenoside-Rg1 and -Re). Among them, ginsenoside-Re (G-Re) is one of the compounds with the highest content in Panax ginseng and is responsible for
OBJECTIVE
Cisplatin (CDDP) was the first platinum-containing anti-cancer drug. However, CDDP causes nephrotoxicity as a side effect, which limits its clinic application. The aim of this study was to investigate the renoprotective effect of ginsenoside Re (G-Re) in a murine model of CDDP-induced
BACKGROUND
We previously reported that ginsenoside Re (GRe) attenuated against methamphetamine (MA)-induced neurotoxicity via anti-inflammatory and antioxidant potentials. We also demonstrated that dynorphin possesses anti-inflammatory and antioxidant potentials against dopaminergic loss, and that
Ginsenoside Re (GS-Re) is one of the main ingredients of ginseng, a widely known Chinese traditional medicine, and has a variety of beneficial effects, including vasorelaxation, antioxidative, anti-inflammatory, and anticancer properties. The aims of the present study were to observe the effect of
Hyperglycaemia-induced retinal microvascular endothelial cell apoptosis is a critical and principle event in diabetic retinopathy (DR), which involves a series of complex processes such as mitochondrial dysfunction and oxidative stress. Ginsenoside Re (Re), a key ingredients of ginseng, is
Microbial transformation of ginsenosides to increase its pharmaceutical effect is gaining increasing attention in recent years. In this study, Cellulosimicrobium sp. TH-20, which was isolated from soil samples on which ginseng grown, exhibited effective ginsenoside-transforming activity. After
Salvianolic acid B (SalB) and ginsenoside Re (Re) protect endotheliocytes against apoptosis through different mechanisms. However, whether both compounds could synergistically protect endothelial cells against oxidized low-density lipoprotein (Ox-LDL)-induced apoptosis is unclear. This study aimed
The ginseng berry contains a variety of biologically active compounds and has a higher ginsenoside content than its roots. This study focused on the hepatoprotective activity of ginseng berry extract prepared by enzyme treatment (EGB) compared to the non-enzyme-treated ginseng berry extract (GB) and
OBJECTIVE
This study was designed to investigate the effect of ginsenoside Re (Re) on cognitive functions, oxidative stress and inflammation in streptozotocin-induced diabetic rats.
METHODS
Diabetic rats were treated with Re (40mg/kg) for 8weeks, blood glucose and body weight were measured monthly