Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

l ascorbic acid/arabidopsis

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 40 rezilta yo

Effects of exogenously-applied L-ascorbic acid on root expansive growth and viability of the border-like cells.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Functions of exogenous L-ascorbic acid in plant roots are poorly understood. Recent study by Makavitskaya et al. (doi.org/10.1093/jxb/ery056) has demonstrated that exogenous ascorbate can be released from roots in response to salt stress, and can trigger elevation in the cytosolic free Ca2+. Here,

L-ascorbic acid metabolism in the ascorbate-deficient arabidopsis mutant vtc1.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The biosynthesis of L-ascorbic acid (vitamin C) is not well understood in plants. The ozone-sensitive Arabidopsis thaliana mutant vitamin c-1 (vtc1; formerly known as soz1) is deficient in ascorbic acid, accumulating approximately 30% of wild-type levels. This deficiency could result from elevated

Metabolic engineering of Kluyveromyces lactis for L-ascorbic acid (vitamin C) biosynthesis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
BACKGROUND L-ascorbic acid (L-AA) is naturally synthesized in plants from D-glucose by 10 steps pathway. The pathway branch to synthesize L-galactose, the key intermediate for L-ascorbic acid biosynthesis, has been recently elucidated. Budding yeast produces an 5-carbon ascorbic acid analogue

Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Yeasts do not possess an endogenous biochemical pathway for the synthesis of vitamin C. However, incubated with l-galactose, L-galactono-1,4-lactone, or L-gulono-1,4-lactone intermediates from the plant or animal pathway leading to l-ascorbic acid, Saccharomyces cerevisiae and Zygosaccharomyces
Humans are unable to synthesize l-ascorbic acid (AsA), yet it is required as a cofactor in many critical biochemical reactions. The majority of human dietary AsA is obtained from plants. In Arabidopsis thaliana, a GDP-mannose pyrophosphorylase (GMPP), VITAMIN C DEFECTIVE1 (VTC1), catalyzes a
A simple, rapid, and quantitative high-pressure liquid chromatography radio method is described for the determination of in vivo (14)C-labeled l-ascorbate, dehydro-l-ascorbate, and total l-ascorbate of Arabidopsis thaliana cell suspensions upon incubation of cultures with exogenous d-[(14)C]mannose.
Ascorbate (AsA) plays a fundamental role in redox homeostasis in plants and animals, primarily by scavenging reactive oxygen species. Three genes, representing diverse steps putatively involved in plant AsA biosynthesis pathways, were cloned and independently expressed in Solanum lycopersicum

l-Galactono-gamma-lactone dehydrogenase from Arabidopsis thaliana, a flavoprotein involved in vitamin C biosynthesis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
l-Galactono-1,4-lactone dehydrogenase (GALDH; ferricytochrome c oxidoreductase; EC 1.3.2.3) is a mitochondrial flavoenzyme that catalyzes the final step in the biosynthesis of vitamin C (l-ascorbic acid) in plants. In the present study, we report on the biochemical properties of recombinant

Ontogenetic changes in vitamin C in selected rice varieties.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Vitamin C (L-ascorbic acid) is a key antioxidant for both plants and animals. In plants, ascorbate is involved in several key physiological processes including photosynthesis, cell expansion and division, growth, flowering, and senescence. In addition, ascorbate is an enzyme cofactor and a regulator
The Smirnoff-Wheeler (SW) pathway has been proven to be the only significant source of l-ascorbic acid (AsA; vitamin C) in the seedlings of the model plant Arabidopsis thaliana. It is yet uncertain whether the same pathway holds for all other plants and their various organs as AsA may also be
Silver nanoparticles (Ag NPs) are the world's most important nanomaterial and nanotoxicant. The aim of this study was to determine the early stages of interactions between Ag NPs and plant cells, and to investigate their physiological roles. We have shown that the addition of Ag NPs to cultivation

L-Gulono-1,4-lactone oxidase expression rescues vitamin C-deficient Arabidopsis (vtc) mutants.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Vitamin C (L-ascorbic acid) has important antioxidant and metabolic functions in both plants and animals, humans have lost the ability to synthesize it. Fresh produce is the major source of vitamin C in the human diet yet only limited information is available concerning its route(s) of synthesis in
In vitro transcription is an essential tool to study the molecular mechanisms of transcription. For over a decade, we have developed an in vitro transcription system from tobacco (Nicotiana tabacum)-cultured cells (BY-2), and this system supported the basic activities of the three RNA polymerases

Overexpression of AtOxR gene improves abiotic stresses tolerance and vitamin C content in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Abiotic stresses are serious threats to plant growth, productivity and result in crop loss worldwide, reducing average yields of most major crops. Although abiotic stresses might elicit different plant responses, most induce the accumulation of reactive oxygen species (ROS) in plant cells leads to

Abscisic acid-induced modulation of metabolic and redox control pathways in Arabidopsis thaliana.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Abscisic acid (ABA) has been implicated as a mediator in plant responses to various environmental stresses. To evaluate the transcriptional and metabolic events downstream of ABA perception, Arabidopsis thaliana seedlings were analyzed by transcript and metabolite profiling, and results were
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge