Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

leymus condensatus/proline

Lyen an sove nan clipboard la
AtikEsè klinikPatant
13 rezilta yo
The comparative study of physiological reaction to salt, alkali and mixed salt stresses in two ecotypes of grey-green and yellow-green of Leymus chinensis were made. At the stage of seedling, the content of chlorophyll and the leakage rate of electrolyte of leaves, free proline, Na/K of tillers were
BACKGROUND Although it has been widely accepted that global changes will pose the most important constrains to plant survival and distribution, our knowledge of the adaptive mechanism for plant with large-scale environmental changes (e.g. drought and high temperature) remains limited. RESULTS An

[Physiological response of two divergent Leymus chinensis types to drought stress in the Songnen Plain].

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The physiological response of two divergent Leymus chinensis types (grey-green type and yellow-green type) to drought stress was studied by pot experiment. At seedling stage, some physiological indexes of the plants and leaves were measured by taking the divergent types under stress of polyethylene
Grasses can be infected simultaneously by endophytic fungi and arbuscular mycorrhizal (AM) fungi. In this study, we tested the hypothesis that endophyte-associated drought resistance of a native grass was affected by an AM fungus. In a greenhouse experiment, we compared the performance of
Fructans play vital roles in abiotic stress tolerance in plants. In this study, we isolated the sucrose:6-fructosyltransferase gene, which is involved in the synthesis of fructans, from Leymus mollis by rapid amplification of cDNA ends. The Lm-6-SFT gene was introduced into

Somatic embryogenesis and plant regeneration in Triticum aestivum x Leymus angustus F1 hybrids and the parental lines.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Somatic embryos and plants were produced from cultured inflorescence and leaf segments of Triticum aestivum X Leymus anaustus F1 hybrids and the parental lines. Inflorescences showed a better capacity for somatic embryogenesis and plant regeneration than leaves. Leymus anaustus produced the highest

[Effects of alkali-stress on Aneurolepidium chinense and Helianthus annuus].

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Employing monocotyledon Aneurolepidium chinense and dicotyledon Helianthus annuus, the two species with high alkali-saline resistance as test materials, and stressing them with neutral, alkalic, and mixed salts, this paper studied the characteristics of various stresses and their interrelations,

Physiological analysis of the effect of altitudinal gradients on Leymus secalinus on the Qinghai-Tibetan Plateau.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
On the Qinghai-Tibetan Plateau, the high-altitudinal gradients can negatively affect plant distribution and limit plant growth and reproduction. Leymus secalinus (Georgi) Tzvel. is an important forage crop on the Qinghai-Tibetan Plateau and has an excellent ability to fix sand and improve soil. To
Plants have different physiological characteristics as the season changes, grazing management in compliance with plant growth and development characteristics may provide new ideas for sustainable livestock development. However, there has been little research on seasonal grazing and plants

LcSAIN1, a novel salt-induced gene from sheepgrass, confers salt stress tolerance in transgenic Arabidopsis and rice.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Previously, we identified >1,500 genes that were induced by high salt stress in sheepgrass (Leymus chinensis, Gramineae: Triticeae) when comparing the changes in their transcription levels in response to high salt stress by next-generation sequencing. Among the identified genes, a gene of unknown

Overexpression of sheepgrass R1-MYB transcription factor LcMYB1 confers salt tolerance in transgenic Arabidopsis.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Sheepgrass [Leymus chinensis (Trin.) Tzvel.] is a dominant, rhizomatous grass that has extensive plasticity in adapting to various harsh environments. Based on data from 454 high-throughput sequencing (GS FLX) exposure to salt stress, an unknown functional MYB-related gene LcMYB1 was identified from

Proteome dynamics and physiological responses to short-term salt stress in Leymus chinensis leaves.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Salt stress is becoming an increasing threat to global agriculture. In this study, physiological and proteomics analysis were performed using a salt-tolerant grass species, Leymus chinensis (L. chinensis). The aim of this study is to understand the potential mechanism of salt tolerance in L.
Leymus chinensis is an important perennial forage grass natively distributed in the Eurasian Steppe. However, little is known about the molecular mechanism of its adaptation to extreme environmental conditions. Based on L. chinensis cold-treated sequence database, a highly expressed
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge