Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

phenylpropanoid/mayi

Lyen an sove nan clipboard la
AtikEsè klinikPatant
Paj 1 soti nan 55 rezilta yo
The expression of phenylpropanoid and related genes was investigated in bm1, bm2, bm3, and bm4 near-isogenic maize plants at the 4-5 leaf stage using a gene-specific cell wall macro-array. The bm3 mutant, which is mutated in the caffeic acid O-methyltransferase (COMT) gene, exhibited the lowest

Characterization of phenylpropanoid pathway genes within European maize (Zea mays L.) inbreds.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
BACKGROUND Forage quality of maize is influenced by both the content and structure of lignins in the cell wall. Biosynthesis of monolignols, constituting the complex structure of lignins, is catalyzed by enzymes in the phenylpropanoid pathway. RESULTS In the present study we have amplified partial

High molecular size humic substances enhance phenylpropanoid metabolism in maize (Zea mays L.).

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
A high molecular weight humic fraction (>3,500 Da) was characterized chemically by DRIFT and 1H NMR spectroscopy, and was applied to Zea mays L. plants to evaluate its effect on phenylpropanoid metabolism. The activity and gene expression of phenylalanine (tyrosine) ammonia-lyase (PAL/TAL), and the

Putative role of pith cell wall phenylpropanoids in Sesamia nonagrioides (Lepidoptera: Noctuidae) resistance.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The stem borer Sesamia nonagrioides (Lefèbvre) is the most important insect pest that attacks maize, Zea mays L., in northwestern Spain. Host plant resistance to this borer was investigated in relation to the cell wall phenylpropanoids content in the pith. Eight inbred lines that differ in

Properties of a Maize Glutathione S-Transferase That Conjugates Coumaric Acid and Other Phenylpropanoids.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
A glutathione S-transferase (GST) enzyme from corn (Zea mays L. Pioneer hybrid 3906) that is active with p-coumaric acid and other unsaturated phenylpropanoids was purified approximately 97-fold and characterized. The native enzyme appeared to be a monomer with a molecular mass of approximately 30
BACKGROUND Silage maize is a major forage and energy resource for cattle feeding, and several studies have shown that lignin content and structure are the determining factors in forage maize feeding value. In maize, four natural brown-midrib mutants have modified lignin content, lignin structure and
Phenylalanine ammonia-lyase (PAL) is one of the most extensively studied enzymes with its crucial role in secondary phenylpropanoid metabolism of plants. Recently, its demand has been increased for aromatic chemical production, but its applications in trans-cinnamic acid production were not much
Plant growth and development are greatly affected due to changes in environmental conditions and become a serious challenge to scientific people. Therefore, present study was conducted to determine the role of secondary metabolites on the growth and development of maize under abiotic stress

Use of Dual RNA-seq for Systems Biology Analysis of Zea mays and Aspergillus flavus Interaction

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The interaction between Aspergillus flavus and Zea mays is complex, and the identification of plant genes and pathways conferring resistance to the fungus has been challenging. Therefore, the authors undertook a systems biology approach involving dual RNA-seq to determine the

Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
The maize pericarp color1 (p1) gene encodes a Myb transcription factor that regulates the accumulation of 3-deoxyflavonoid pigments called phlobaphenes. The Unstable factor for orange1 (Ufo1) is a dominant epigenetic modifier of the p1 that results in ectopic pigmentation in pericarp. Presence of

The genetic basis of C-glycosyl flavone B-ring modification in maize (Zea mays L.) silks.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Resistance to corn earworm (CEW) (Helicoverpa zea Boddie) has been attributed to high concentrations of C-glycosyl flavones and chlorogenic acid in maize (Zea mays L.) silks. The most common C-glycosyl flavones isolated from maize silks are maysin, apimaysin, and methoxymaysin, which are

ZmMYB31 directly represses maize lignin genes and redirects the phenylpropanoid metabolic flux.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
Few regulators of phenylpropanoids have been identified in monocots having potential as biofuel crops. Here we demonstrate the role of the maize (Zea mays) R2R3-MYB factor ZmMYB31 in the control of the phenylpropanoid pathway. We determined its in vitro consensus DNA-binding sequence as ACC(T)/(A)
The MYB gene family represents one of the largest groups of transcription factors in plants. Recent evidences have also demonstrated key role of MYB transcription factors in regulating the expression of major genes involved in the biosynthesis of phenylpropanoid compounds which confer biotic and

Perturbation of maize phenylpropanoid metabolism by an AvrE family type III effector from Pantoea stewartii.

Se sèlman itilizatè ki anrejistre yo ki ka tradwi atik yo
Log In / Enskri
AvrE family type III effector proteins share the ability to suppress host defenses, induce disease-associated cell death, and promote bacterial growth. However, despite widespread contributions to numerous bacterial diseases in agriculturally important plants, the mode of action of these effectors
Flavonoids are a large family of polyphenolic compounds with manifold functions in plants. Present in a wide range of vegetables and fruits, flavonoids form an integral part of the human diet and confer multiple health benefits. Here, we report on metabolic engineering of the flavonoid biosynthetic
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge