Paj 1 soti nan 32 rezilta yo
In recent years, lipid droplets have emerged as dynamic organelles rather than inactive storage sites for triacylglycerol. The number of proteins known to be associated with lipid droplets has increased, but remains small in comparison with those found with other organelles. Also the mechanisms of
Aluminum (Al) and proton (H⁺) tolerances are essential traits for plants to adapt to acid soil environments. In Arabidopsis (Arabidopsis thaliana), these tolerances are mediated by a zinc-finger transcription factor, SENSITIVE TO PROTON RHIZOTOXICITY1 (AtSTOP1), which regulates the transcription of
Because of its highly efficient homologous recombination, the moss Physcomitrella patens is a model organism particularly suited for reverse genetics, but this inherent characteristic limits forward genetic approaches. Here, we show that the tobacco (Nicotiana tabacum) retrotransposon Tnt1
Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two
Mixed-linkage (1,3;1,4)-β-glucan (MLG), an abundant cell wall polysaccharide in the Poaceae, has been detected in ascomycetes, algae, and seedless vascular plants, but not in eudicots. Although MLG has not been reported in bryophytes, a predicted glycosyltransferase from the moss Physcomitrella
Artemisinin is a kind of sesquiterpene lactone containing endoperoxide bridge,which is the most effective anti-malarial drug at present. However,low content of artemisinin in Artemisia annua,ranging from 0. 1%-1. 0% of dry weight,as well as the complicated extraction process have resulted in low
Known SABATH methyltransferases, all of which were identified from seed plants, catalyze methylation of either the carboxyl group of a variety of low molecular weight metabolites or the nitrogen moiety of precursors of caffeine. In this study, the SABATH family from the bryophyte Physcomitrella
The NACK kinesins (NACK1, NACK2 in tobacco and AtNACK1/HINKEL, AtNACK2/STUD/TETRASPORE in Arabidopsis), members of a plant-specific kinesin-7 family, are required for cytokinesis. Previous studies using tobacco and Arabidopsis cells showed that NACK1 and AtNACK1 at the phragmoplast midzone activate
UNASSIGNED
Dehydrins, PpDHNA and PpDHNB from Physcomitrella patens provide drought and cold tolerance while PpDHNC shows antimicrobial property suggesting different dehydrins perform separate functions in P. patens. The moss Physcomitrella patens can withstand extremes of environmental condition
The SABRE (Systematic consolidation of Arabidopsis and other Botanical REsources) database cross-searches plant genetic resources through publicly available Arabidopsis information. In SABRE, plant expressed sequence tag (EST)/cDNA clones are related to TAIR (The Arabidoposis Information Resource)
Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate
The bifunctional diterpene synthase, copalyl diphosphate/kaurene synthase from the moss Physcomitrella patens (PpCPS/KS), catalyses the formation of at least four diterpenes, including ent-beyerene, ent-sandaracopimaradiene, ent-kaur-16-ene, and 16-hydroxy-ent-kaurene. The enzymatic activity has
A nucleus-encoded MinE gene, designated PpMinE, from Physcomitrella patens was identified using RT-PCR. The presence of both N- and C-terminal extensions in PpMinE protein suggested its cyanobacterial origin. The transient expression of PpMinE using green fluorescent protein fusion in tobacco
Pseudomonas syringae pv. phaseolicola is the causative agent of halo blight in common bean (Phaseolus vulgaris). Similar to other pathogenic gram-negative bacteria, it secrets a set of type III effectors into host cells to subvert defense mechanisms. HopQ1 (for Hrp outer protein Q) is one of these
C-5 DNA methylation is an essential mechanism controlling gene expression and developmental programs in a variety of organisms. Though the role of DNA methylation has been intensively studied in mammals and Arabidopsis, little is known about the evolution of this mechanism. The chromomethylase (CMT)