13 rezilta yo
Dolichol monophosphomannose (DPM) is an ever-present donor of mannose (Man) in various eukaryotic glycosylation processes. Intriguingly, the related polyprenol monophosphomannose (PPM) is involved in the biosynthesis of lipomannan and lipoarabinomanan, key bacterial factors termed modulins that are
Dolichol phosphate-mannose (Dol-P-Man) is a mannose donor in various eukaryotic glycosylation processes. So far, two groups of Dol-P-Man synthases have been characterized based on the way they are stabilized in the endoplasmic reticulum membrane. Enzymes belonging to the first group, such as the
Tuberculosis remains a global major problem. The immune responses of host against Mycobacterium tuberculosis (M. tuberculosis) are complicated. M. tuberculosis lives mainly within host cells, usually macrophages which constitute the first line of host defense. Mycobacterial proteins, especially cell
Mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce a complex cell wall that is critical for their survival. The largest structural component of the cell wall, the mycolyl-arabinogalactan-peptidoglycan complex, has at its core a galactan domain composed of
BACKGROUND
Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved
Synthetic peptides derived from a 45-kDa glycoprotein antigen of Mycobacterium tuberculosis were shown to function as glycosyltransferase acceptors for mannose residues in a mannosyltransferase cell-free assay. The mannosyltransferase activity was localized within both isolated membranes and a P60
All mycobacterial species, including pathogenic Mycobacterium tuberculosis, synthesize an abundant class of phosphatidylinositol mannosides (PIMs) that are essential for normal growth and viability. These glycolipids are important cell-wall and/or plasma-membrane components in their own right and
Phosphatidylinositol mannosides (PIM), lipomannan (LM), and lipoarabinomannan (LAM) are essential components of the cell wall and plasma membrane of mycobacteria, including the human pathogen Mycobacterium tuberculosis, as well as the related Corynebacterineae. We have previously shown that the
PPM (polyprenol monophosphomannose) has been shown to act as a glycosyl donor in the biosynthesis of the Man (mannose)-rich mycobacterial lipoglycans LM (lipomannan) and LAM (lipoarabinomannan). The Mycobacterium tuberculosis PPM synthase (Mt-Ppm1) catalyses the transfer of Man from GDP-Man to
Temperature-sensitive mutant 2-20/32 of Mycobacterium smegmatis mc(2)155 was isolated and genetically complemented with a Mycobacterium tuberculosis H37Rv DNA fragment that contained a single open reading frame. This open reading frame is designated Rv3265c in the M. tuberculosis H37Rv genome.
The biosynthesis of mycobacterial mannose-containing lipoglycans, such as lipomannan (LM) and the immunomodulator lipoarabinomanan (LAM), is carried out by the GT-C superfamily of glycosyltransferases that require polyprenylphosphate-based mannose (PPM) as a sugar donor. The essentiality of
The "core" structure of the cell wall of Mycobacterium and related genera is unique among prokaryotes, consisting of a covalently linked complex of mycolic acids, D-arabinan and D-galactan (mycolylarabinogalactan, mAG), which, in turn, is linked to peptidoglycan via a special linkage unit,
Lipomannan (LM) and lipoarabinomannan (LAM) are key Corynebacterineae glycoconjugates that are integral components of the mycobacterial cell wall, and are potent immunomodulators during infection. LAM is a complex heteropolysaccharide synthesized by an array of essential glycosyltransferase family C