8 rezilta yo
Drought is one of the most severe limitations to plant growth and productivity. Resurrection plants have evolved a unique capability to tolerate desiccation in vegetative tissues. Fern-ally Selaginella tamariscina (Beauv.) is one of the most primitive vascular resurrection plants, which can survive
BACKGROUND
Doradilla is a plant that has a long history in the Mexican traditional system of medicine for gall and renal stones, diuresis, stomach and liver inflammation among other diseases. Major components isolated from these plants include biflavonoids as amentoflavone (1), robustaflavone (2)
The activities of 10 enzymes involved in carbohydrate metabolism were measured in both desiccated and rehydrated fronds of the desiccation-tolerant pteridophyte Selaginella lepidophylla (Hook. & Grev.) Spring. Enzyme conservation was defined as the ratio of desiccated to hydrated frond enzyme
Chitinase-A from a lycophyte Selaginella doederleinii (SdChiA), having molecular mass of 53 kDa, was purified to homogeneity by column chromatography. The cDNA encoding SdChiA was cloned by rapid amplification of cDNA ends and polymerase chain reaction. It consisted of 1477 nucleotides and its open
To explore molecular mechanisms underlying the physiological response of Selaginella bryopteris, a comprehensive proteome analysis was carried out in roots and fronds undergoing dehydration and rehydration. Plants were dehydrated for 7 days followed by 2 and 24 h of rehydration. In roots out of 59
Selaginella tamariscina (Beauv.) spring, a primitive vascular resurrection plant, can survive extreme drought and recover when water becomes available. To identify drought-inducible genes and to clarify the molecular mechanism of drought tolerance, a comparative transcriptional pattern analysis was
Lectins are proteins with ability to bind reversibly and non-enzymatically to a specific carbohydrate. They are involved in numerous biological processes and show enormous biotechnological potential. Among plant lectins, the hevein domain is extremely common, being observed in several kinds of
BACKGROUND
NAC domain transcription factors are important transcriptional regulators involved in plant growth, development and stress responses. Recent studies have revealed several classes of NAC transcriptional factors crucial for controlling secondary cell wall biosynthesis. These transcriptional