Haitian Creole
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

sesuvium portulacastrum/proline

Lyen an sove nan clipboard la
AtikEsè klinikPatant
9 rezilta yo
The interaction between soil drying and salinity was studied in the perennial halophyte, Sesuvium portulacastrum. Rooted cuttings were individually cultivated for three months in silty-sandy soil under two irrigation modes: 100 and 25% of field capacity (FC). The amount of the evapotranspirated
Physiological and proteomic responses of Sesuvium portulacastrum leaves under salinity were investigated. Different from glycophytes, this halophyte had optimal growth at 200-300mM NaCl and accumulated more starch grains in chloroplasts under high salinity. Increased contents of soluble sugars,
Sesuvium portulacastrum, a halophyte with high tolerance to heavy metals like Cd, Pb and Ni is considered for phytoremediation of metal contaminated saline soils. The tolerance to a selected metal ion could, by hypothesis, be stimulated through in vitro adaptation and regeneration of the plant.
Sesuvium portulacastrum is a halophytic species well adapted to salinity and drought. In order to evaluate the physiological impact of salt on water deficit-induced stress response, we cultivated seedlings for 12 days, in the presence or absence of 100 mmol l(-1) NaCl, on a nutrient solution
Halophytes are able to tolerate relatively high concentrations of hazardous metals in a growing substrate, what makes them suitable candidates for phytoremediation of metal-contaminated soils. In this work, we aimed to study the physiological responses of the halophyte Sesuvium portulacastrum L. to
Salinity is an important environmental constraint limiting plant productivity. Understanding adaptive responses of halophytes to high saline environments may offer clues to manage and improve salt stress in crop plants. We have studied physiological, biochemical and metabolic changes in a perennial,
In this study, growth and osmolyte concentration in the leaves of halophyte, Sesuvium portulacastrum, were studied with respect to salinity. Therefore, the changes in shoot growth, leaf tissue water content, osmolyte concentration (proline content, glycine betaine) and antioxidant enzymes
Glycine betaine (GB) accumulation is involved in abiotic stress. However, it is not known whether BADH, the key enzyme of GB synthesis, utilizes the antioxidant system to confer drought stress tolerance. In this study, a novel member of the ALDH10 gene family, SpBADH, was isolated from Sesuvium
CONCLUSIONS NaCl alleviates Cd toxicity in Sesvium portulacastrum by maintaining plant water status and redox balance, protecting chloroplasts structure and inducing some potential Cd (2+) chelators as GSH and proline. It has been demonstrated that NaCl alleviates Cd-induced growth inhibition in the
Antre nan paj
facebook nou an

Baz done ki pi konplè remèd fèy medsin te apiye nan syans

  • Travay nan 55 lang
  • Geri èrbal te apiye nan syans
  • Remèd fèy rekonesans pa imaj
  • Kat entèaktif GPS - tag zèb sou kote (vini byento)
  • Li piblikasyon syantifik ki gen rapò ak rechèch ou an
  • Search remèd fèy medsin pa efè yo
  • Izeganize enterè ou yo ak rete kanpe fè dat ak rechèch la nouvèl, esè klinik ak rive

Tape yon sentòm oswa yon maladi epi li sou remèd fèy ki ta ka ede, tape yon zèb ak wè maladi ak sentòm li itilize kont.
* Tout enfòmasyon baze sou rechèch syantifik pibliye

Google Play badgeApp Store badge