Paj 1 soti nan 21 rezilta yo
The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a
Succinate dehydrogenase (Complex II; SDH) plays an important role in mitochondrial respiratory metabolism. The SDH complex consists of four core subunits and multiple cofactors, which must be assembled correctly to ensure enzyme function. To date, only an assembly factor (SDHAF2) required for FAD
The DNA polymerase chain reaction was developed for in vitro amplification of specific DNA sequences, and it has been used for a wide variety of purposes in several fields. We have developed an application of the polymerase chain reaction that is useful for the isolation of partial cDNA or genomic
The succinate dehydrogenase complex (complex II) is a highly conserved protein complex composed of the SDH1 to SDH4 subunits in bacteria and in the mitochondria of animals and fungi. The reason for the occurrence of up to four additional subunits in complex II of plants, termed SDH5 to SDH8, so far
Reactive oxygen species (ROS) are signaling molecules that regulate plant development and responses to stresses. Mitochondria are the source of most ROS in heterotrophic cells, and mitochondrial complex I and complex III are regarded as the main sites of ROS production in plant mitochondria. Recent
The effect of light on succinate dehydrogenase (SDH) activity and mRNA content was studied in Arabidopsis thaliana plants. The transition from darkness to light caused a short transient increase in the SDH activity followed by a decrease to a half of the original activity. The white or red light
The mechanism of transduction of the phytochrome signal regulating the expression of succinate dehydrogenase in Arabidopsis has been investigated. Using the phytochrome mutants of Arabidopsis, it is demonstrated that the inhibition of succinate dehydrogenase in the light may result from the
Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T-DNA insertions in At5g51040, a protein
Despite being toxic at a high concentrations, reactive oxygen species (ROS) play a pivotal role as signaling molecules in responses to stress and regulation of plant development. The mitochondrial electron transport chain (ETC) is the major source of ROS in cells. Although the regulation of ROS in
Mitochondrial complex II (succinate dehydrogenase [SDH]) is part of the tricarboxylic acid cycle and the respiratory electron transport chain. Its flavoprotein subunit is encoded by two nuclear genes, SDH1-1 and SDH1-2, in Arabidopsis (Arabidopsis thaliana). The SDH1-2 gene is significantly
Three different nuclear genes encode the essential iron-sulfur subunit of mitochondrial complex II (succinate dehydrogenase) in Arabidopsis (Arabidopsis thaliana), raising interesting questions about their origin and function. To find clues about their role, we have undertaken a detailed analysis of
In eukaryotes the presence of the dimeric phospholipid cardiolipin (CL) is limited to the mitochondrial membranes. It resides predominantly in the inner membrane where it interacts with components of the mitochondrial electron transfer chain. CL deficiency has previously been shown to affect
Frataxin, a protein crucial for the biogenesis of mitochondria in different organisms, was recently identified in Arabidopsis thaliana. To investigate the role of frataxin in higher plants, we analyze two knock-out and one knock-down T-DNA insertion mutants. The knock-out mutants present an
Mitochondrial complex II (succinate dehydrogenase) is part of the tricarboxylic acid cycle and the respiratory chain. Three nuclear genes encode its essential iron-sulfur subunit in Arabidopsis (Arabidopsis thaliana). One of them, SUCCINATE DEHYDROGENASE2-3 (SDH2-3), is specifically expressed in the
The toxicity of graphene on suspensions of Arabidopsis thaliana (Columbia ecotype) T87 cells was investigated by examining the morphology, mitochondrial dysfunction, reactive oxygen species generation (ROS), and translocation of graphene as the toxicological endpoints. The cells were grown in