Paj 1 soti nan 16 rezilta yo
In the present study, active fractions of the methanolic extract of Xanthium strumarium (XS) showing potent cytotoxicity were determined using microculture tetrazolium (MTT) and sulforhodamine B (SRB) assays in selected cancer cell lines. The active fractions viz., chloroform soluble fraction of
Xanthatin, a xanthanolide sesquiterpene lactone isolated from Xanthium strumarium L. (Asteraceae), has prominent anti-tumor activity. Initial mechanism of action studies suggested xanthatin triggered activation of Wnt/β-catenin. We examined the effects of xanthatin on signaling pathways in A459 lung
Inspired by the allelopathetic effects of Xanthium orientale subsp. italicum (Moretti) Greuter, bioassay-guided isolation was employed to identify its antitumor constituents and clarify the chemical basis of its multitarget activity. Among four fractions of X.orientale
Bioassay-guided fractionation of a CHCl3 extract of the leaves of Xanthium italicum Moretti led to the isolation of four xanthanolides: xanthatin (1), 4-epixanthanol (2), 4-epi-isoxanthanol (3), and 2-hydroxyxanthinosin (4). Their structures were determined by means of 1D and 2D NMR spectroscopy,
Xanthatin and xanthinosin, 2 sesquiterpene lactones isolated from the burs of Xanthiun strumarium L. (cocklebur), showed moderate to high in vitro cytotoxic activity in the human cancer cell lines WiDr ATCC (colon), MDA-MB-231 ATCC (breast), and NCI-417 (lung). Xanthatin and xanthinosin were
Colorectal cancer is one of the most common malignancies worldwide and is associated with high mortality rates. We previously reported that Xanthium strumarium L. induces mitotic arrest in proliferating cells, a process mediated by xanthatins.The aim of Xanthatin, a sesquiterpene lactone purified from Xanthium strumarium L., possesses prominent anticancer activity. We found that disruption of GSK3β activity was essential for xanthatin to exert its anticancer properties in non-small cell lung cancer (NSCLC), concurrent with preferable suppression of
exo-Methylene lactone group-containing compounds, such as (--)-xanthatin, are present in a large variety of biologically active natural products, including extracts of Xanthium strumarium (Cocklebur). These substances are reported to possess diverse functional activities, exhibiting
In addition to their own antioxidants, human cells feed on external antioxidants, such as the phenolic compounds of fruits and vegetables, which work together to keep oxidative stress in check. Sechium edule, an edible species of chayote, has phenolic compounds with antioxidant activity and
Xanthatin (XT), a naturally occurring sesquiterpene lactone presented in cocklebur ( Xanthium strumarium L.), is under development as a potential anticancer agent. Despite the promising anticancer effect of XT, the molecular mechanism underlying its cellular action has not been well elucidated. The
Xanthium strumarium L. (Asteraceae) is a common and well-known traditional Chinese herbal medicine usually named Cang-Er-Zi, and has been used for thousands of years in China. The purpose of this paper is to summarize the progress of modern research, and provide a systematic review on the
Xanthatin is a natural sesquiterpene lactone purified from Xanthium strumarium L., which has shown prominent antitumor activity against a variety of cancer cells. In the current study, we investigated the effect of xanthatin on the growth of glioma cells in vitro and in vivo, and elucidated the
Emerging drugs aim at targeting the genomic integrity and replication machinery in ovarian cancer. While the antiproliferative activity of Xanthium strumarium L. extract (XFC), a traditional herbal medicine, is believed to alter the mitotic apparatus of Chinese hamster ovary epithelial cells,
The antiproliferative potential of a crude extract from the chayote hybrid H-837-07-GISeM® and its potential for apoptosis induction were assessed in leukaemic cell lines and normal mouse bone marrow mononuclear cells (BM-MNCs). The extract strongly inhibited the proliferation of the P388, J774, and
Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this