Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Seminars in Nuclear Medicine 2013-Nov

An overview of PET neuroimaging.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Ilya Nasrallah
Jacob Dubroff

Kata kunci

Abstrak

Over the past 35 years or so, PET brain imaging has allowed powerful and unique insights into brain function under normal conditions and in disease states. Initially, as PET instrumentation continued to develop, studies were focused on brain perfusion and glucose metabolism. This permitted refinement of brain imaging for important, non-oncologic clinical indications. The ability of PET to not only provide spatial localization of metabolic changes but also to accurately and consistently quantify their distribution proved valuable for applications in the clinical setting. Specifically, glucose metabolism brain imaging using (F-18) fluorodeoxyglucose continues to be invaluable for evaluating patients with intractable seizures for identifying seizure foci and operative planning. Cerebral glucose metabolism also contributes to diagnosis of neurodegenerative diseases that cause dementia. Alzheimer disease, dementia with Lewy bodies, and the several variants of frontotemporal lobar degeneration have differing typical patterns of hypometabolism. In Alzheimer disease, hypometabolism has furthermore been associated with poorer cognitive performance and ensuing cognitive and functional decline. As the field of radiochemistry evolved, novel radioligands including radiolabeled flumazenil, dopamine transporter ligands, nicotine receptor ligands, and others have allowed for further understanding of molecular changes in the brain associated with various diseases. Recently, PET brain imaging reached another milestone with the approval of (F-18) florbetapir imaging by the United States Federal Drug Administration for detection of amyloid plaque accumulation in brain, the major histopathologic hallmark of Alzheimer disease, and efforts have been made to define the clinical role of this imaging agent in the setting of the currently limited treatment options. Hopefully, this represents the first of many new radiopharmaceuticals that would allow improved diagnostic and prognostic information in these and other clinical applications, including Parkinson disease and traumatic brain injury.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge