Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 2018-Sep

Inhibiting 6-phosphogluconate dehydrogenase selectively targets breast cancer through AMPK activation.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Xiaoyu Yang
Xiaochun Peng
Jiangrong Huang

Kata kunci

Abstrak

OBJECTIVE

6-phosphogluconate dehydrogenase (6PGD), a key enzyme of the oxidative pentose phosphate pathway, is involved in tumor growth and metabolism. Although high 6PGD activity has been shown to be associated with poor prognosis, its role and therapeutic value in breast cancer remain unknown.

METHODS

The levels and roles of 6PGD were analyzed in breast cancer cells and their normal counterparts. The underlying mechanisms of 6PGD's roles are also analyzed.

RESULTS

We found that 6PGD is aberrantly activated in breast cancer as shown by its increased transcriptional and translational levels as well as enzyme activity in breast cancer tissues and cell lines compared to normal counterparts. Although similar degree of enzyme activity inhibition was achieved in both breast cancer and normal breast cells, 6PGD inhibition by siRNA-mediated knockdown or pharmacological inhibitor physcion is more effective in inhibiting growth and survival in breast cancer than normal breast cells. Moreover, inhibiting 6PGD significantly sensitizes breast cancer response to chemotherapeutic agents in in vitro cell culture system and in vivo xenograft breast cancer model. We further show that 6PGD inhibition activates AMPK and its downstream substrate ACC1, leading to reduction of ACC1 activity and lipid biosynthesis. AMPK depletion significantly reverses the inhibitory effects of physcion in breast cancer cells, confirming that 6PGD inhibition targets breast cancer cell via AMPK activation.

CONCLUSIONS

Our work provides experimental evidence on the association of 6PGD with poor prognosis in breast cancer and suggests that 6PGD inhibition may represent a potential therapeutic strategy to augment chemotherapy efficacy in breast cancer.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge