Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Methods in enzymology 2005

Liposomal vasoactive intestinal peptide.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
Varun Sethi
Hayat Onyüksel
Israel Rubinstein

Kata kunci

Abstrak

Liposomes have been investigated as drug carriers since first discovered in the 1960s. However, the first-generation, so-called classic liposomes found relatively limited therapeutic utility. Nonetheless, the advent in the 1980s of the second-generation sterically stabilized liposomes (SSL) that evade uptake by the host's reticuloendothelial system greatly enhanced their utility as drug carriers because of their prolonged circulation half-life and passive targeting to injured and cancerous tissues. Over the past decade, our work focused on exploiting the bioactivity of vasoactive intestinal peptide (VIP), a ubiquitous 28-amino acid, amphipathic and pleiotropic mammalian neuropeptide, as a drug. To this end, the peptide expresses distinct and unique innate bioactivity that could be harnessed to treat several human diseases that represent unmet medical needs, such as pulmonary hypertension, stroke, Alzheimer's disease, sepsis, female sexual arousal dysfunction, acute lung injury, and arthritis. Unfortunately, the bioactive effects of VIP last only a few minutes due to its rapid degradation and inactivation by enzymes, catalytic antibodies, and spontaneous hydrolysis in biological fluids. Hence, our goal was to develop and test stable, long-acting formulations of VIP using both classic and SSL as platform technologies. We found that spontaneous association of VIP with phospholipid bilayers leads to a transition in the conformation of the peptide from random coil in an aqueous environment to alpha-helix, the preferred conformation for ligand-receptor interactions, in the presence of lipids. This process, in turn, protects VIP from degradation and inactivation and amplifies its bioactivity in vivo. Importantly, we discovered that the film rehydration and extrusion technique is the most suitable to passively load VIP onto SSL at room temperature and yields the most consistent results. Collectively, these attributes indicate that VIP on SSL represents a suitable formulation that could be tested in human disease.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge