Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Journal of Orthopaedic Science 2003

Radiofrequency-generated glow discharge treatment: potential benefits for polyester ligaments.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Tautan disimpan ke clipboard
John Richard James Rowland
Satoshi Tsukazaki
Toshiyuki Kikuchi
Kyosuke Fujikawa
John Kearney
Richard Lomas
Edward Wood
Bahaa Botros Seedhom

Kata kunci

Abstrak

This multicenter study has revealed that treating a woven polyethylene terephthalate (polyester) ligament with a radiofrequency (RF)-generated glow discharge (RFGD) produces marked benefits in terms of increased cell attachment and proliferation on the implant surface. In vitro tests of the same material revealed that the number of synovial fibroblasts attached to the treated samples after 14 days was four times that of the untreated material. Many of the cells were spread over the surface of a single filament, and some formed bridges between one filament and the next. The incorporation of [(3)H]-thymidine by synovial stromal cells (a measure of the amount of cell division) growing on the treated material was five times that on the untreated samples. The amount of DNA present on the treated material was also found to be almost an order of magnitude greater than that on untreated samples. This increase in cell attachment and proliferation is almost certainly related to a notable increase in wettability of the polyester surface induced by treatment. Mechanical tests revealed that, for ligaments with a nominal ultimate tensile strength of 2100 N, RF-generated glow treatment reduced the ligament's strength by 12% but increased its stiffness by 15%. After a medium-term fatigue test (10.8 million cycles), however, there appeared to be recovery of the mechanical properties, with the strength and stiffness of untreated and treated samples being essentially the same. After exhaustive fatigue tests (more than 62 million cycles) the residual strength of the treated ligaments was only 9% lower than that of the unfatigued and untreated ligaments.

Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge