8 hasil
CONCLUSIONS
W3 is essential for β-diketone biosynthesis but suppresses its hydroxylation. Loss-of-function mutation w3 significantly increased cuticle permeability in terms of water loss and chlorophyll efflux.
Cuticular waxes are complex mixtures consisting mostly of very-long-chain aliphatics with single, primary functional groups. However, the waxes of many plant species also include aliphatics with one or more functional groups residing on subterminal or mid-chain carbons. In the present work, the
The work herein presents comprehensive analyses of the cuticular wax mixtures covering the flag leaf blade and peduncle of bread wheat (Triticum aestivum) cv. Bethlehem. Overall, Gas Chromatography-Mass Spectrometry and Flame Ionization Detection revealed a wax coverage of flag leaf blades (16
The semidominant EMS-induced mutant w5 affects epicuticular wax deposition and mapped to an approximately 194-kb region on chromosome 7DL. Epicuticular wax is responsible for the glaucous appearance of plants and protects against many biotic and abiotic stresses. In wheat (Triticum aestivum L.),
The glossy varieties (A14 and Jing 2001) and glaucous varieties (Fanmai 5 and Shanken 99) of wheat (Triticum aestivum L.) were selected for evaluation of developmental changes in the composition and morphology of cuticular waxes on leaves and spikes. The results provide us with two different wax
The glaucous appearance of wheat (Triticum aestivum) and barley (Hordeum vulgare) plants, that is the light bluish-gray look of flag leaf, stem, and spike surfaces, results from deposition of cuticular β-diketone wax on their surfaces; this phenotype is associated with high yield, especially under
n-Alkanes, esters, aldehydes, free alcohols, β-diketones and hydroxy-β-diketones were found to be the lipid components of the cuticular waxes of common wheat Chinese Spring (Triticum aestivum L.). The ditelosomic lines 7A-L and 7D-S showed a dramatic decrease in the amount of β-diketones and hydroxy
Wild type wheat (Triticum aestivum L.) and three mutant lines that have reduced glaucousness on the flag leaf sheath have been examined for variations in glaucousness, contact angles, wax chemistry and wax morphology. On the sheath and culm, organs that are glaucous in the wild type, increasing