5 hasil
Supplemental oxygen contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this investigation, we tested the hypothesis that prenatal treatment of pregnant mice (C57BL/6J) with the cytochrome P450 (CYP)1A1 inducer, ß-napthoflavone (BNF), will lead to attenuation
Prolonged hyperoxia contributes to bronchopulmonary dysplasia (BPD) in preterm infants. β-Naphthoflavone (BNF) is a potent inducer of cytochrome P450 (CYP)1A enzymes, which have been implicated in hyperoxic injuries in adult mice. In this investigation, we tested the hypothesis that newborn mice
Exposure to supraphysiological concentrations of oxygen (hyperoxia) leads to bronchopulmonary dysplasia (BPD), one of the most common pulmonary morbidities in preterm neonates, which is more prevalent in males than females. Beta-naphthoflavone (BNF) is protective against hyperoxic lung injury in
Maternal smoking is one of the risk factors for preterm birth and for the development of bronchopulmonary dysplasia (BPD). In this study, we tested the hypothesis that prenatal exposure of rats to benzo[a]pyrene (BP), a component of cigarette smoke, will result in increased susceptibility of
Supplemental oxygen, frequently used in premature infants, has been implicated in the development of bronchopulmonary dysplasia (BPD). While the mechanisms of oxygen-induced lung injury are not known, reactive oxygen species (ROS) are most likely involved in the process. Here, we tested the