15 hasil
In the last years, new disease proteins and genes have been identified in frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), leading to a dramatic shift in our understanding of the molecular mechanisms underlying both conditions. The vast majority of FTLD and ALS are
The nuclear protein fused in sarcoma (FUS) is found in cytoplasmic inclusions in a subset of patients with the neurodegenerative disorder frontotemporal lobar degeneration (FTLD-FUS). FUS contains a methylated arginine-glycine-glycine domain that is required for transport into the nucleus. Recent
An intronic GGGGCC expansion in C9orf72 is the most common known cause of both frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). The repeat expansion leads to the generation of sense and antisense repeat RNA aggregates and dipeptide repeat (DPR) proteins, generated by
Fused in sarcoma (FUS) is a nuclear protein that carries a proline-tyrosine nuclear localization signal (PY-NLS) and is imported into the nucleus via Transportin (TRN). Defects in nuclear import of FUS have been implicated in neurodegeneration, since mutations in the PY-NLS of FUS cause amyotrophic
Reversible phase separation underpins the role of FUS in ribonucleoprotein granules and other membrane-free organelles and is, in part, driven by the intrinsically disordered low-complexity (LC) domain of FUS. Here, we report that cooperative cation-π interactions between tyrosines in the LC domain
TAF15 (TBP associated factor 15) is a member of the highly conserved TET (also known as FET) protein family of RNA binding proteins (RBP), which comprises in addition FUS (fused in sarcoma, also known as TLS, translocated in liposarcoma) and EWS (Ewing sarcoma protein). The TET proteins are implied
Nucleotide repeat expansions in the C9orf72 gene cause frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Transcribed repeat RNA accumulates within RNA foci and is also translated into toxic dipeptide repeat proteins (DPR). The mechanism of repeat RNA accumulation,
RNA-binding protein aggregation is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). To gain better insight into the molecular interactions underlying this process, we investigated FUS, which is
Frontotemporal lobar degeneration (FTLD) is heterogeneous in clinical presentation, neuropathological characteristics and genetics. An expanded GGGGCC hexanucleotide repeat in C9ORF72 is the most common genetic cause of both FTLD and motor neuron disease (MND). Dipeptide repeat polymers (DPR) are
RNA-binding proteins TDP-43 and FUS play essential roles in pre-mRNA splicing, localization, granule formation and other aspects of RNA metabolism. Both proteins are implicated in neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Despite
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders with overlapping pathomechanisms, neurobehavioral features, and genetic etiologies. Individuals diagnosed with either disorder exhibit symptoms within a clinical spectrum. Symptoms of ALS involve
Deposition of the nuclear DNA/RNA-binding protein Fused in sarcoma (FUS) in cytosolic inclusions is a common hallmark of some cases of frontotemporal lobar degeneration (FTLD-FUS) and amyotrophic lateral sclerosis (ALS-FUS). Whether both diseases also share common pathological mechanisms is
Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous
Cytoplasmic inclusions containing TAR DNA-binding protein of 43 kDa (TDP-43) or Fused in sarcoma (FUS) are a hallmark of amyotrophic lateral sclerosis (ALS) and several subtypes of frontotemporal lobar degeneration (FTLD). FUS-positive inclusions in FTLD and ALS patients are consistently co-labeled
We previously reported a kindred with three cases of dementia, in which the proband exhibited features typical of frontotemporal dementia and parkinsonism (FTDP). An arginine insertion at codon 352 (insR352) in the presenilin-1 (PSEN1) gene was identified in the proband, but analyses in plasma and