Halaman 1 dari 17 hasil
Intermediate interrupted ataxin 2 (ATXN2) alleles (27-33 CAG-repeats) increase the risk for amyotrophic lateral sclerosis and are reported as modifiers in chromosome 9 open reading frame 72 (C9orf72) carriers, rendering susceptibility to amyotrophic lateral sclerosis rather than frontotemporal lobar
Objective: The urodynamics underlying lower urinary tract (LUT) dysfunction in frontotemporal lobar degeneration (FTLD) has not been reported. Herein, we investigated LUT function in FTLD patients by performing a urodynamics
A Japanese male with no family history of neurological disease or dementia showed behavioral abnormalities including egocentric and antisocial behavior at the age of 80. Over the next few years, other psychiatric symptoms such as allotriophagy and stereotypical behavior were also observed and his
We and others have reported heterozygous progranulin mutations as an important cause of frontotemporal lobar degeneration (FTLD). It has been identified a complete progranulin deficiency because of a homozygous mutation in a sibling pair with neuronal ceroid lipofuscinosis (NCL). Here, we describe
A nuclear protein, transactivation response (TAR) DNA binding protein 43 kDa (TDP-43), is the major component of neuronal cytoplasmic inclusions (NCIs) in frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U) and sporadic amyotrophic lateral sclerosis (SALS). While initially thought
Late onset neurodegenerative diseases represent a major public health concern as the population in many countries ages. Both frequent diseases such as Alzheimer disease (AD, 14% incidence for 80-84 year-old Europeans) or Parkinson disease (PD, 1.4% prevalence for >55 years old) share, with other
Frontotemporal lobar degeneration with transactive response DNA-binding protein 43 (FTLD-TDP) and progressive supranuclear palsy (PSP) are distinct neurodegenerations with different clinical presentations. We report two cases with FTLD-TDP and PSP in comorbidity: a patient with amnestic dementia
There exists considerable clinical and pathological overlap between frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS), which implies that these 2 neurodegenerative conditions share common pathogenic mechanisms. Recently, intermediate-length (27-33) polyglutamine
A number of mutations in microtubule associated protein tau gene (MAPT), causing frontotemporal lobar degeneration (FTLD) with tau pathology, are located in the four-repeated microtubule (MT) binding domains and affect the ability of tau to bind MTs. Here, we describe a novel variant lying in the
Expanded glutamine repeats of the ataxin-2 (ATXN2) protein cause spinocerebellar ataxia type 2 (SCA2), a rare neurodegenerative disorder. More recent studies have suggested that expanded ATXN2 repeats are a genetic risk factor for amyotrophic lateral sclerosis (ALS) via an RNA-dependent interaction
Although dementia is a clinical diagnosis, neuroimaging often is crucial for proper assessment. Magnetic resonance imaging (MRI) and computed tomography (CT) may identify nondegenerative and potentially treatable causes of dementia. Recent neuroimaging advances, such as the Pittsburgh Compound-B
In neurodegenerative diseases, cerebrospinal fluid analysis (CSF) is predominantly performed to exclude inflammatory diseases and to perform a risk assessment in dementive disorders by measurement of tau proteins and amyloid beta peptides. However, large scale data on basic findings of CSF routine
Pathogenic CAG (cytosine-adenine-guanine) expansions beyond certain thresholds in the ataxin-2 (ATXN2) gene cause spinocerebellar ataxia type 2 (SCA2) and were shown to contribute to Parkinson disease, amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Regulation of ATXN2 gene
Retrotransposable elements (RTEs) have actively multiplied over the past 80 million years of primate evolution, and as a consequence, such elements collectively occupy ∼ 40% of the human genome. As RTE activity can have detrimental effects on the human genome and transcriptome, silencing mechanisms
Repeat expansion in C9orf72 causes amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Expanded sense and antisense repeat RNA transcripts in C9orf72 are translated into five dipeptide-repeat proteins (DPRs) in an AUG-independent manner. We previously identified the heterogeneous