8 hasil
The influence of low temperature on soybean (Glycine max [L.] Merr. cv. Wells) energy transduction via mitochondrial respiration and dehydrogenases was investigated in this study during imbibition and germination. Mitochondria were isolated from embryonic axes of seeds treated at 10 and 23 C
Two isoenzymes of glucose 6-phosphate dehydrogenase (EC 1.1.1.49) have been separated from the plant fraction of soybean (Glycine max L. Merr. cv Williams) nodules by a procedure involving (NH(4))(2)SO(4) gradient fractionation, gel chromatography, chromatofocusing, and affinity chromatography. The
The roles of abscisic acid (ABA) and hydrogen peroxide (H2O2) in inducing glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) activity and the possible roles of G6PDH in regulating ascorbate-glutathione (AsA-GSH) cycle were investigated in soybean (Glycine max L.) roots under drought stress.
Total pyridine nucleotide concentration of root tissue for young soybean (Glycine max var. Bansei) and sunflower (Helianthus annuus L. var. Mammoth Russian) plants is the same with either ammonium or nitrate, but nitrate results in an increased proportion of total oxidized plus reduced NADP
Soybean (Glycine max [L.] Merr.) cell suspension cultures (cv. Williams 82) inoculated with the pathogenic bacteria Pseudomonas syringae pv. glycinea respond with a hypersensitive reaction (HR) when the bacteria express the avirulence gene avrA. A mRNA differential display was established for this
Primary roots of soybean [Glycine max (L.), cv Harosoy 63] seedlings were inoculated with zoospores from either race 1 (incompatible, host resistant) or race 3 (compatible, host susceptible) of Phytophthora megasperma f. sp. glycinea (Pmg) and the activities of phenylalanine ammonia-lyase (PAL),
The distribution of organelles and associated enzymes between cells containing bacteroids and uninfected cells from nodules of Glycine max L. Merr. cv Amsoy 71 was investigated by separation of protoplasts on a sucrose step-gradient. Infected protoplasts were much larger, irregular in shape, and
We report the production of astragalin (AST) from regiospecific modifications of naringenin (NRN) in Escherichia coli BL21(DE3). The exogenously supplied NRN was converted into dihydrokaempferol (DHK) and then kaempferol (KMF) in the presence of flavanone-3-hydroxylase (f3h) and flavonone synthase