Indonesian
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

hemin/stroke

Tautan disimpan ke clipboard
ArtikelUji klinisPaten
Halaman 1 dari 27 hasil

Hemin toxicity: a preventable source of brain damage following hemorrhagic stroke.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Hemorrhagic stroke is a common cause of permanent brain damage, with a significant amount of the damage occurring in the weeks following a stroke. This secondary damage is partly due to the toxic effects of hemin, a breakdown product of hemoglobin. The serum proteins hemopexin and albumin can bind
During hemorrhagic stroke induced by intracerebral hemorrhage (ICH), brain injury occurs from the deleterious actions of hemoglobin byproducts; induction of heme oxygenase-1 (HO-1) also plays a critical role in the neurotoxicity in ICH. Valproic acid (VPA), which is a commonly used drug in the

The metabolism and toxicity of hemin in astrocytes.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Hemin is cytotoxic, and contributes to the brain damage that accompanies hemorrhagic stroke. In order to better understand the basis of hemin toxicity in astrocytes, the present study quantified hemin metabolism and compared it to the pattern of cell death. Heme oxygenase-1 (HO-1) expression was

Phenanthrolines protect astrocytes from hemin without chelating iron.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Hemin, the degradation product of hemoglobin, contributes to the neurodegeneration that occurs in the weeks following a hemorrhagic stroke. The breakdown of hemin in cells releases redox-active iron that can facilitate the production of toxic hydroxyl radicals. The present study used 3-week old

Cofilin signaling in hemin-induced microglial activation and inflammation.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Intracerebral hemorrhage (ICH) is the most severe form of stroke and is further exacerbated by the secondary injury involving inflammatory response due to the activation of microglia. This secondary injury is partly due to the toxic effects of hemin, an endogenous breakdown product of hemoglobin.
Intracerebral hemorrhage (ICH) is a pathological condition that accompanies certain neurological diseases like hemorrhagic stroke or brain trauma. Its effects are severely destructive to the brain and can be fatal. There is an entire spectrum of harmful factors which are associated with the
Background and Purpose- Accumulated evidence suggests that hemin-a breakdown product of hemoglobin-plays a pivotal role in the inflammatory injuries that result after hemorrhagic stroke through the Toll Like Receptor 2-Toll Like Receptor 4 signal pathway. However, the mechanism of how hemin triggers

Changes in mitochondrial ultrastructure in SH-SY5Y cells during apoptosis induced by hemin.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Hemorrhagic stroke is associated with high morbidity and mortality. Hemin is a decomposition product of hemoglobin that is related to neuronal apoptosis after hemorrhage, although the molecular basis for this association remains unclear. To address this issue, the present study investigated

Hemopexin decreases hemin accumulation and catabolism by neural cells.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Hemopexin is a serum, CSF, and neuronal protein that is protective after experimental stroke. Its efficacy in the latter has been linked to increased expression and activity of heme oxygenase (HO)-1, suggesting that it facilitates heme degradation and subsequent release of cytoprotective biliverdin

Uptake, metabolism and toxicity of hemin in cultured neurons.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Following hemorrhagic stroke, red blood cells lyse and release neurotoxic hemin into the interstitial space. The present study investigates whether neurons can accumulate and metabolize hemin. We demonstrate that cultured neurons express the heme carrier protein 1 (HCP1), and that this transporter

Uptake and Toxicity of Hemin and Iron in Cultured Mouse Astrocytes.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Hemin is a breakdown product of the blood protein, hemoglobin and is responsible for much of the secondary damage caused following a hemorrhagic stroke. Hemin is toxic to cultured astrocytes and it is thought that this toxicity is due to iron that is liberated when hemin is degraded. However, free
OBJECTIVE N-acetylcysteine (NAC) is a clinically approved thiol-containing redox modulatory compound currently in trials for many neurological and psychiatric disorders. Although generically labeled as an "antioxidant," poor understanding of its site(s) of action is a barrier to its use in

Deferasirox, a trivalent iron chelator, ameliorates neuronal damage in hemorrhagic stroke models

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Purpose: Intracranial hemorrhage (ICH) is a devastating disease with high mortality and morbidity. After ICH, iron released from the hematoma plays a crucial role in secondary brain injury. Deferasirox (DFR) is a trivalent iron chelator,

Neuronal Death After Hemorrhagic Stroke In Vitro and In Vivo Shares Features of Ferroptosis and Necroptosis.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Intracerebral hemorrhage leads to disability or death with few established treatments. Adverse outcomes after intracerebral hemorrhage result from irreversible damage to neurons resulting from primary and secondary injury. Secondary injury has been attributed to hemoglobin and its oxidized product

Targeting heme oxygenase after intracerebral hemorrhage.

Hanya pengguna terdaftar yang dapat menerjemahkan artikel
Masuk daftar
Intracerebral hemorrhage (ICH) is the primary event in approximately 10% of strokes, and has higher rates of morbidity and mortality than ischemic stroke. Experimental evidence suggests that the toxicity of hemoglobin and its degradation products contributes to secondary injury that may be amenable
Bergabunglah dengan
halaman facebook kami

Database tanaman obat terlengkap yang didukung oleh sains

  • Bekerja dalam 55 bahasa
  • Pengobatan herbal didukung oleh sains
  • Pengenalan herbal melalui gambar
  • Peta GPS interaktif - beri tag herba di lokasi (segera hadir)
  • Baca publikasi ilmiah yang terkait dengan pencarian Anda
  • Cari tanaman obat berdasarkan efeknya
  • Atur minat Anda dan ikuti perkembangan berita, uji klinis, dan paten

Ketikkan gejala atau penyakit dan baca tentang jamu yang mungkin membantu, ketik jamu dan lihat penyakit dan gejala yang digunakan untuk melawannya.
* Semua informasi didasarkan pada penelitian ilmiah yang dipublikasikan

Google Play badgeApp Store badge