Halaman 1 dari 96 hasil
We previously demonstrated that two closely spaced polyproline motifs, with the consensus sequence Pro-X-X-Pro-X-Lys/Arg, located between residues 343 to 356 of NS5A, mediated interactions with cellular SH3 domains. The N-terminal motif (termed PP2.1) is only conserved in genotype 1 isolates,
The hepatitis C virus (HCV) NS3 protease is essential for viral replication. It has been a target of choice for intensive drug discovery research. On the basis of an active pentapeptide inhibitor, 1, we envisioned that macrocyclization from the P2 proline to P3 capping could enhance binding to the
Hepatitis C virus (HCV) is susceptible to cyclosporine (CsA) and other cyclophilin (CypA) inhibitors, but the genetic basis of susceptibility is controversial. Whether genetic variation in NS5A alters cell culture susceptibility of HCV to CypA inhibition is unclear. We constructed replicons
Hepatitis C virus (HCV) is the major causative agent of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. The recent development of highly effective direct-acting antivirals (DAAs) has revolutionized the treatment of HCV patients. However, these DAAs are exorbitantly
The non-structural hepatitis C virus proteins NS5A and NS5B form a complex through interaction with the SH2 and SH3 domains of the non-receptor Src tyrosine kinase, which seems essential for viral replication. We have crystallized the complex between the SH3 domain of the c-Src tyrosine kinase and
Hepatitis C virus (HCV) reorganizes intracellular membranes to establish sites of replication. How viral and cellular proteins target, bind, and rearrange specific membranes into the replication factory remains a mystery. We used a lentivirus-based RNA interference (RNAi) screening approach to
Through high throughput screening, substituted proline sulfonamide 6 was identified as HCV NS5b RNA-dependent RNA polymerase inhibitor. Optimization of various regions of the lead molecule resulted in compounds that displayed good potency and selectivity. The crystal structure of 6 and NS5b
The design and synthesis of a series of tripeptide acylsulfonamides as potent inhibitors of the HCV NS3/4A serine protease is described. These analogues house a C4 aryl, C4 hydroxy-proline at the S2 position of the tripeptide scaffold. Information relating to structure-activity relationships as well
Inhibitors of hepatitis C virus NS3 serine protease often incorporate a large P2 moiety to interact with the surface of the enzyme while shielding part of the catalytic triad. This feature is important in many inhibitors in order to have the necessary potency needed for efficacy. In this Letter we
We recently described the identification of an optimized alpha-ketoamide warhead for our series of HCV NS3.4A inhibitors. We report herein a series of HCV protease inhibitors incorporating 3-alkyl-substituted prolines in P(2). These compounds show exceptional enzymatic and cellular potency given
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) and its interaction with the human chaperone cyclophilin A are both targets for highly potent and promising antiviral drugs that are in the late stages of clinical development. Despite its high interest in regards to the development of drugs to
Hepatitis C virus (HCV) establishes a persistent infection that in many cases leads to cirrhosis and hepatocellular carcinoma. The non-structural 5A protein (NS5A) has been implicated in this process as it contains a C-terminal polyproline motif (termed P2) that binds to Src homology 3 (SH3) domains
The hepatitis C virus (HCV) NS5A protein is highly phosphorylated by cellular protein kinases. To study how NS5A might be integrated in cellular kinase signalling, we isolated phosphoproteins from HuH-7 hepatoma cells that specifically interacted with recombinant NS5A protein. Subsequent mass