Halaman 1 dari 41 hasil
Different lengths of the promoter of grape (Vitis vinifera) VvHT1 (Hexose Transporter 1) gene, which encodes a putative hexose transporter expressed during the ripening of grape, have been transcriptionally fused to the beta-glucuronidase reporter gene. In transgenic tobacco (Nicotiana tabacum)
The plasma membrane hexose transporter and the tonoplast hexose transporter from heterotrophically grown transformed Nicotiana tabacum cells have been studied in vitro using membrane vesicles for trans-zero transport studies. In highly purified phase-partitioned outside-out plasma membrane vesicles
Wild-type tobacco (Nicotiana tabacum L.) seed development was characterized with respect to architecture and carbohydrate metabolism. Tobacco seeds accumulate oil and protein in the embryo, cellular endosperm and inner layer of the seed coat. They have high cell wall invertase (INV) and hexoses in
In the present study, leaves of different plant species were girdled by the hot wax collar method to prevent export of assimilates. Photosynthetic activity of girdled and control leaves was evaluated 3 to 7 days later by two methods: (a) carbon exchange rate (CER) of attached leaves was determined
The aim of this work was to establish the influence of fructose 2,6-bisphosphate (Fru-2,6-P2) on non-photosynthetic carbohydrate metabolism in plants. Heterotrophic callus lines exhibiting elevated levels of Fru-2,6-P2 were generated from transgenic tobacco (Nicotiana tabacum L.) plants expressing a
The developmental characteristics of a transgenic tobacco line (BIK62) expressing the ipt cytokinin-biosynthetic gene under the control of a tagged promoter were analysed. In situ hybridization and cytokinin immunocytochemistry revealed that the ipt gene was mainly expressed in the axillary buds
We have examined the possible role of leaf cytosolic hexoses and the expression of mannitol metabolism as mechanisms that may affect the repression of photosynthetic capacity when plants are grown at 1000 versus 380 [mu]L L-1 CO2. In plants grown at high CO2, leaf ribulose-1,5-bisphosphate
When tobacco is provided with a high nitrate supply, only a small amount of the nitrate taken up by the roots is immediately assimilated inside the roots, while the majority is transported to the leaves where it is reduced to ammonium. To elucidate the importance of root nitrate assimilation,
Tobacco (Nicotiana tabacum L.) plants were used to study connections between deficiency in boron and nitrate reduction. Boron deficiency caused a substantial decrease in shoot and, particularly, root weights that resulted in a notably high shoot/root ratio in comparison to boron-sufficient plants.
Fe excess is believed to generate oxidative stress. To contribute to the understanding of Fe metabolism, Fe excess was induced in Nicotiana plumbaginifolia grown in hydroponic culture upon root cutting. Toxicity symptoms leading to brown spots covering the leaf surface became visible after 6 h.
Some compounds that contain glucose groups can be transported across the plasma membrane into the cells through hexose transporters. To test the hypothesis that glucose-conjugated insecticides also have similar uptake and translocation properties, a novel fluorescent conjugate (12) was prepared by
Changes in phosphate metabolism were explored in discs from tobacco (Nicotiana tabacum) leaves of three contrasting types: green leaves which were fully expanded and attached to the plant, leaves which had yellowed following excision and dark starvation, and leaves which had yellowed while attached
Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and
Recently it has been reported that boron (B) deficiency increases the expression of Nicotiana tabacum asparagine synthetase (AS) gene in roots, and that AS might play a main role as a detoxifying mechanism to convert ammonium into asparagine. Interestingly, glutamate dehydrogenase (GDH) genes,
The mutualistic interaction in arbuscular mycorrhiza (AM) is characterized by an exchange of mineral nutrients and carbon. The major benefit of AM, which is the supply of phosphate to the plant, and the stimulation of mycorrhization by low phosphate fertilization has been well studied. However, less