5 hasil
In cruciferous plants insect attack or physical damage induce the synthesis of the glucosinolate breakdown product indole-3-carbinol, which plays a key role in the defense against attackers. Indole-3-carbinol also affects plant growth and development, acting as an auxin antagonist by binding to the
The glucosinolate breakdown product indole-3-carbinol functions in cruciferous vegetables as a protective agent against foraging insects. While the toxic and deterrent effects of glucosinolate breakdown on herbivores and pathogens have been studied extensively, the secondary responses that are
Like many crucifer-specialist herbivores, Pieris rapae uses the presence of glucosinolates as a signal for oviposition and larval feeding. Arabidopsis thaliana glucosinolate-related mutants provide a unique resource for studying the in vivo role of these compounds in affecting P. rapae oviposition.
The cleavage of glucosinolates by myrosinase to produce toxic breakdown products is a characteristic insect defense of cruciferous plants. Although green peach aphids (Myzus persicae) are able to avoid most contact with myrosinase when feeding from the phloem of Arabidopsis thaliana, indole
Plants release chemicals to deter attackers. Arabidopsis thaliana relies on multiple defense compounds, including indol-3-ylmethyl glucosinolate (I3G), which upon hydrolysis initiated by myrosinase enzymes releases a multitude of bioactive compounds, among others, indole-3-acetonitrile and